Abstract:
An associative commutative algebra of distributions that contains homogeneous and associated homogeneous distributions is constructed. This algebra is used to analyze generalized solutions to strictly hyperbolic partial differential equations. Possible types of singularities are studied and the necessary (analogues of Hugoniуt conditions for shock waves) and sufficient conditions for the existence of such solutions are obtained.
Citation:
V. G. Danilov, V. P. Maslov, V. M. Shelkovich, “Algebras of the singularities of singular solutions to first-order quasi-linear strictly hyperbolic systems”, TMF, 114:1 (1998), 3–55; Theoret. and Math. Phys., 114:1 (1998), 1–42
\Bibitem{DanMasShe98}
\by V.~G.~Danilov, V.~P.~Maslov, V.~M.~Shelkovich
\paper Algebras of the singularities of singular solutions to first-order quasi-linear strictly hyperbolic systems
\jour TMF
\yr 1998
\vol 114
\issue 1
\pages 3--55
\mathnet{http://mi.mathnet.ru/tmf827}
\crossref{https://doi.org/10.4213/tmf827}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1756560}
\zmath{https://zbmath.org/?q=an:0946.35049}
\elib{https://elibrary.ru/item.asp?id=13282143}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 114
\issue 1
\pages 1--42
\crossref{https://doi.org/10.1007/BF02557106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000073538400001}
Linking options:
https://www.mathnet.ru/eng/tmf827
https://doi.org/10.4213/tmf827
https://www.mathnet.ru/eng/tmf/v114/i1/p3
This publication is cited in the following 51 articles:
E. V. Kuzmina, “Obobschennye resheniya vtorogo uravneniya ierarkhii Rikkati”, PFMT, 2022, no. 2(51), 68–75
A. B. Antonevich, T. G. Shagova, “Multiplication of Distributions and Algebras of Mnemofunctions”, J Math Sci, 265:2 (2022), 147
Maximilian F. Hasler, Trends in Mathematics, Current Trends in Analysis, its Applications and Computation, 2022, 373
E. V. Kuzmina, “Generalized solutions of the Riccati equation”, Vescì Akademìì navuk Belarusì. Seryâ fizika-matematyčnyh navuk, 58:2 (2022), 144
Sarrico C.O.R., Paiva A., “Creation, Annihilation, and Interaction of Delta-Waves in Nonlinear Models: a Distributional Product Approach”, Russ. J. Math. Phys., 27:1 (2020), 111–125
A. B. Antonevich, T. G. Shagova, “Umnozhenie raspredelenii i algebry mnemofunktsii”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 65, no. 3, Rossiiskii universitet druzhby narodov, M., 2019, 339–389
Zheng Sh., Ouyang Zh., Wu K., “Singular Traveling Wave Solutions For Boussinesq Equation With Power Law Nonlinearity and Dual Dispersion”, Adv. Differ. Equ., 2019:1 (2019), 501
Sarrico C.O.R., Paiva A., “Newton'S Second Law and the Multiplication of Distributions”, J. Math. Phys., 59:1 (2018), 013505
Rodriguez-Bermudez P., Valino-Alonso B., “Asymptotic Maslov'S Method For Shocks of Conservation Laws Systems With Quadratic Flux”, Appl. Anal., 97:6 (2018), 888–901
Sarrico Carlos Orlando R., “Multiplication of Distributions and Travelling Wave Solutions For the Keyfitz-Kranzer System”, Taiwan. J. Math., 22:3 (2018), 677–693
Sarrico C.O.R., Paiva A., “New Distributional Travelling Waves For the Nonlinear Klein-Gordon Equation”, Differ. Integral Equ., 30:11-12 (2017), 853–878
Sarrico C.O.R., Paiva A., “The Multiplication of Distributions in the Study of a Riemann Problem in Fluid Dynamics”, J. Nonlinear Math. Phys., 24:3 (2017), 328–345
Sarrico C.O.R., “the Riemann Problem For the Brio System: a Solution Containing a Dirac Mass Obtained Via a Distributional Product”, Russ. J. Math. Phys., 22:4 (2015), 518–527
Sarrico C.O.R., Paiva A., “Products of distributions and collision of a ? -wave with a ?? -wave in a turbulent model”, J. Nonlinear Math. Phys., 22:3 (2015), 381–394
Sarrico C.O.R., “A Distributional Product Approach To Delta-Shock Wave Solutions For a Generalized Pressureless Gas Dynamics System”, Int. J. Math., 25:1 (2014), 1450007
C. O. R. Sarrico, “New Distributional Global Solutions for the Hunter-Saxton Equation”, Abstract and Applied Analysis, 2014 (2014), 1
S. Albeverio, A. Yu. Khrennikov, S. V. Kozyrev, S. A. Vakulenko, I. V. Volovich, “In memory of Vladimir M. Shelkovich (1949–2013)”, P-Adic Num Ultrametr Anal Appl, 5:3 (2013), 242
Sarrico C.O.R., “Products of Distributions and Singular Travelling Waves as Solutions of Advection-Reaction Equations”, Russ. J. Math. Phys., 19:2 (2012), 244–255
Reutskiy, S, “Forecast of the trajectory of the center of typhoons and the Maslov decomposition”, Russian Journal of Mathematical Physics, 14:2 (2007), 232
Bermudez, PR, “Hugoniot-Maslov chains of a shock wave in conservation law with polynomial flow”, Mathematische Nachrichten, 280:8 (2007), 907