Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1999, Volume 121, Number 3, Pages 464–478
DOI: https://doi.org/10.4213/tmf823
(Mi tmf823)
 

This article is cited in 7 scientific papers (total in 7 papers)

The canonical transformation method in the periodic Anderson model

V. A. Moskalenko, N. B. Perkins

Joint Institute for Nuclear Research
Full-text PDF (233 kB) Citations (7)
References:
Abstract: We investigate a version of the periodic Anderson model in which both the $d$- and $f$-electron subsystems are strongly correlated. The one-site hybridization of the electron quantum states in each subsystem and the possibility of the $d$-electron hopping between lattice sites are taken into account. To construct the canonical transformation $S$-matrix, we use the system of one-site orthonormalized functions belonging to the zero Hamiltonian matrix of rank 16. We solve the problem exactly and determine the thermodynamic properties of the system in the approximation where the width of the conductance band vanishes. We use the diagram technique to investigate the delocalization of electrons in each subsystem and the renormalization of the one-particle Green's functions. We find the quasiparticle energy spectrum of delocalized electrons in the chain diagram approximation. We show that there are eight energy subbands in the symmetrical case.
Received: 19.05.1999
English version:
Theoretical and Mathematical Physics, 1999, Volume 121, Issue 3, Pages 1654–1665
DOI: https://doi.org/10.1007/BF02557210
Bibliographic databases:
Language: Russian
Citation: V. A. Moskalenko, N. B. Perkins, “The canonical transformation method in the periodic Anderson model”, TMF, 121:3 (1999), 464–478; Theoret. and Math. Phys., 121:3 (1999), 1654–1665
Citation in format AMSBIB
\Bibitem{MosPer99}
\by V.~A.~Moskalenko, N.~B.~Perkins
\paper The canonical transformation method in the periodic Anderson model
\jour TMF
\yr 1999
\vol 121
\issue 3
\pages 464--478
\mathnet{http://mi.mathnet.ru/tmf823}
\crossref{https://doi.org/10.4213/tmf823}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1761143}
\zmath{https://zbmath.org/?q=an:1005.82036}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 121
\issue 3
\pages 1654--1665
\crossref{https://doi.org/10.1007/BF02557210}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085306100009}
Linking options:
  • https://www.mathnet.ru/eng/tmf823
  • https://doi.org/10.4213/tmf823
  • https://www.mathnet.ru/eng/tmf/v121/i3/p464
  • This publication is cited in the following 7 articles:
    1. I. D. Chebotar', “Systems of Strongly Correlated Electrons Interacting with Each Other and with Phonons: Diagrammatic Approach”, Surf. Engin. Appl.Electrochem., 60:1 (2024), 94  crossref
    2. V. V. Val'kov, D. M. Dzebisashvili, “Properties of the heavy-fermion spectrum in the canted phase of antiferromagnetic intermetallides”, Theoret. and Math. Phys., 162:1 (2010), 106–125  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Val'kov V.V., Dzebisashvili D.M., “Electron spectrum and heat capacity of heavy fermions in the canted phase of antiferromagnetic intermetallides”, Journal of Experimental and Theoretical Physics, 110:2 (2010), 301–318  crossref  adsnasa  isi  scopus  scopus  scopus
    4. D. F. Digor, P. Entel, V. A. Moskalenko, N. M. Plakida, “Peculiarities of pair interaction in the four-band Hubbard model”, Theoret. and Math. Phys., 149:1 (2006), 1382–1392  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. D. F. Digor, V. A. Moskalenko, “Wannier Representation for the Three-Band Hubbard Model”, Theoret. and Math. Phys., 130:2 (2002), 271–286  mathnet  crossref  crossref  zmath  isi
    6. Moskalenko, VA, “The cell representation of the three-band Hubbard model”, Physics of Particles and Nuclei, 33:4 (2002), 497  isi
    7. D. F. Digor, P. Entel, M. Marinaro, V. A. Moskalenko, N. B. Perkins, “The Possibility of Forming Coupled Pairs in the Periodic Anderson Model”, Theoret. and Math. Phys., 127:2 (2001), 664–675  mathnet  crossref  crossref  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:415
    Full-text PDF :200
    References:62
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025