Abstract:
We investigate a version of the periodic Anderson model in which both the $d$- and $f$-electron subsystems are strongly correlated. The one-site hybridization of the electron quantum states in each subsystem and the possibility of the $d$-electron hopping between lattice sites are taken into account. To construct the canonical transformation $S$-matrix, we use the system of one-site orthonormalized functions belonging to the zero Hamiltonian matrix of rank 16. We solve the problem exactly and determine the thermodynamic properties of the system in the approximation where the width of the conductance band vanishes. We use the diagram technique to investigate the delocalization of electrons in each subsystem and the renormalization of the one-particle Green's functions. We find the quasiparticle energy spectrum of delocalized electrons in the chain diagram approximation. We show that there are eight energy subbands in the symmetrical case.
Citation:
V. A. Moskalenko, N. B. Perkins, “The canonical transformation method in the periodic Anderson model”, TMF, 121:3 (1999), 464–478; Theoret. and Math. Phys., 121:3 (1999), 1654–1665
\Bibitem{MosPer99}
\by V.~A.~Moskalenko, N.~B.~Perkins
\paper The canonical transformation method in the periodic Anderson model
\jour TMF
\yr 1999
\vol 121
\issue 3
\pages 464--478
\mathnet{http://mi.mathnet.ru/tmf823}
\crossref{https://doi.org/10.4213/tmf823}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1761143}
\zmath{https://zbmath.org/?q=an:1005.82036}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 121
\issue 3
\pages 1654--1665
\crossref{https://doi.org/10.1007/BF02557210}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085306100009}
Linking options:
https://www.mathnet.ru/eng/tmf823
https://doi.org/10.4213/tmf823
https://www.mathnet.ru/eng/tmf/v121/i3/p464
This publication is cited in the following 7 articles:
I. D. Chebotar', “Systems of Strongly Correlated Electrons Interacting with Each Other and with Phonons: Diagrammatic Approach”, Surf. Engin. Appl.Electrochem., 60:1 (2024), 94
V. V. Val'kov, D. M. Dzebisashvili, “Properties of the heavy-fermion spectrum in the canted phase of antiferromagnetic intermetallides”, Theoret. and Math. Phys., 162:1 (2010), 106–125
Val'kov V.V., Dzebisashvili D.M., “Electron spectrum and heat capacity of heavy fermions in the canted phase of antiferromagnetic intermetallides”, Journal of Experimental and Theoretical Physics, 110:2 (2010), 301–318
D. F. Digor, P. Entel, V. A. Moskalenko, N. M. Plakida, “Peculiarities of pair interaction in the four-band Hubbard model”, Theoret. and Math. Phys., 149:1 (2006), 1382–1392
D. F. Digor, V. A. Moskalenko, “Wannier Representation for the Three-Band Hubbard Model”, Theoret. and Math. Phys., 130:2 (2002), 271–286
Moskalenko, VA, “The cell representation of the three-band Hubbard model”, Physics of Particles and Nuclei, 33:4 (2002), 497
D. F. Digor, P. Entel, M. Marinaro, V. A. Moskalenko, N. B. Perkins, “The Possibility of Forming Coupled Pairs in the Periodic Anderson Model”, Theoret. and Math. Phys., 127:2 (2001), 664–675