Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1999, Volume 121, Number 2, Pages 271–284
DOI: https://doi.org/10.4213/tmf808
(Mi tmf808)
 

This article is cited in 81 scientific papers (total in 81 papers)

Discrete analogues of the Liouville equation

V. E. Adler, S. Ya. Startsev

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Abstract: The notion of Laplace invariants is generalized to lattices and discrete equations that are difference analogues of hyperbolic partial differential equations with two independent variables. The sequence of Laplace invariants satisfies the discrete analogue of the two-dimensional Toda lattice. We prove that terminating this sequence by zeros is a necessary condition for the existence of integrals of the equation under consideration. We present formulas for the higher symmetries of equations possessing such integrals. We give examples of difference analogues of the Liouville equation.
Received: 16.02.1999
English version:
Theoretical and Mathematical Physics, 1999, Volume 121, Issue 2, Pages 1484–1495
DOI: https://doi.org/10.1007/BF02557219
Bibliographic databases:
Language: Russian
Citation: V. E. Adler, S. Ya. Startsev, “Discrete analogues of the Liouville equation”, TMF, 121:2 (1999), 271–284; Theoret. and Math. Phys., 121:2 (1999), 1484–1495
Citation in format AMSBIB
\Bibitem{AdlSta99}
\by V.~E.~Adler, S.~Ya.~Startsev
\paper Discrete analogues of the Liouville equation
\jour TMF
\yr 1999
\vol 121
\issue 2
\pages 271--284
\mathnet{http://mi.mathnet.ru/tmf808}
\crossref{https://doi.org/10.4213/tmf808}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1761918}
\zmath{https://zbmath.org/?q=an:0987.37066}
\elib{https://elibrary.ru/item.asp?id=13313727}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 121
\issue 2
\pages 1484--1495
\crossref{https://doi.org/10.1007/BF02557219}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085132900005}
Linking options:
  • https://www.mathnet.ru/eng/tmf808
  • https://doi.org/10.4213/tmf808
  • https://www.mathnet.ru/eng/tmf/v121/i2/p271
  • This publication is cited in the following 81 articles:
    1. R. N. Garifullin, “Classification of semidiscrete equations of hyperbolic type. The case of fifth-order symmetries”, Theoret. and Math. Phys., 222:1 (2025), 10–19  mathnet  crossref  crossref
    2. S Ya Startsev, “Darboux integrability of hyperbolic partial differential equations: is it a property of integrals rather than equations?”, J. Phys. A: Math. Theor., 58:2 (2025), 025206  crossref
    3. Xiaoxue Xu, Decong Yi, Liyuan Ma, “A novel solution to the generalized lattice Liouville equation”, Applied Mathematics Letters, 2024, 109115  crossref
    4. I T Habibullin, K I Faizulina, A R Khakimova, “Laplace transformations and sine-Gordon type integrable PDE”, J. Phys. A: Math. Theor., 57:1 (2024), 015203  crossref
    5. Giorgio Gubbiotti, “Algebraic entropy for systems of quad equations”, Open Communications in Nonlinear Mathematical Physics, Special Issue in Memory of... (2024)  crossref
    6. Giorgio Gubbiotti, Andrew P Kels, Claude-M Viallet, “Algebraic entropy for hex systems”, Nonlinearity, 37:12 (2024), 125007  crossref
    7. Hong-juan Tian, A. Silem, “Cauchy matrix approach to novel extended semidiscrete KP-type systems”, Theoret. and Math. Phys., 221:2 (2024), 1929–1939  mathnet  crossref  crossref  adsnasa
    8. A R Khakimova, K I Faizulina, “Reduction of the Laplace sequence and sine-Gordon type equations”, J. Phys. A: Math. Theor., 57:49 (2024), 495208  crossref
    9. M. N. Kuznetsova, I. T. Habibullin, A. R. Khakimova, “On the problem of classifying integrable chains with three independent variables”, Theoret. and Math. Phys., 215:2 (2023), 667–690  mathnet  crossref  crossref  mathscinet  adsnasa
    10. M. N. Kuznetsova, “Construction of localized particular solutions of chains with three independent variables”, Theoret. and Math. Phys., 216:2 (2023), 1158–1167  mathnet  crossref  crossref  mathscinet  adsnasa
    11. I. T. Habibullin, A. R. Khakimova, “On the classification of nonlinear integrable three-dimensional chains via characteristic Lie algebras”, Theoret. and Math. Phys., 217:1 (2023), 1541–1573  mathnet  crossref  crossref  mathscinet  adsnasa
    12. Ismagil T. Habibullin, Aigul R. Khakimova, Alfya U. Sakieva, “Miura-Type Transformations for Integrable Lattices in 3D”, Mathematics, 11:16 (2023), 3522  crossref
    13. Sergey V Smirnov, “Integral preserving discretization of 2D Toda lattices”, J. Phys. A: Math. Theor., 56:26 (2023), 265204  crossref
    14. Kostyantyn Zheltukhin, Natalya Zheltukhina, “On Construction of Darboux integrable discrete models”, Reports on Mathematical Physics, 92:3 (2023), 279  crossref
    15. I. T. Habibullin, A. R. Khakimova, “Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph”, Theoret. and Math. Phys., 213:2 (2022), 1589–1612  mathnet  crossref  crossref  mathscinet  adsnasa
    16. I. T. Habibullin, A. R. Khakimova, “Algebraic reductions of discrete equations of Hirota-Miwa type”, Ufa Math. J., 14:4 (2022), 113–126  mathnet  crossref  mathscinet
    17. D. V. Millionshchikov, S. V. Smirnov, “Characteristic algebras and integrable exponential systems”, Ufa Math. J., 13:2 (2021), 41–69  mathnet  crossref  isi
    18. Ufa Math. J., 13:2 (2021), 160–169  mathnet  crossref  isi
    19. Ufa Math. J., 13:2 (2021), 170–186  mathnet  crossref  isi
    20. Dmitry K. Demskoi, “The Lattice Sine-Gordon Equation as a Superposition Formula for an NLS-Type System”, SIGMA, 17 (2021), 108, 10 pp.  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:866
    Full-text PDF :423
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025