Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1999, Volume 120, Number 2, Pages 248–255
DOI: https://doi.org/10.4213/tmf773
(Mi tmf773)
 

This article is cited in 14 scientific papers (total in 14 papers)

Generalized Heisenberg equations on Z-graded Lie algebras

I. Z. Golubchika, V. V. Sokolovb

a Bashkir State Pedagogical University
b Landau Institute for Theoretical Physics, Centre for Non-linear Studies
References:
Abstract: We study the integrable systems of the Heisenberg equation type that correspond to different decompositions of Z-graded Lie algebras into a direct sum of two subalgebras. We discover new non-Abelian generalizations of some known integrable models.
Received: 25.02.1999
English version:
Theoretical and Mathematical Physics, 1999, Volume 120, Issue 2, Pages 1019–1025
DOI: https://doi.org/10.1007/BF02557409
Bibliographic databases:
Language: Russian
Citation: I. Z. Golubchik, V. V. Sokolov, “Generalized Heisenberg equations on Z-graded Lie algebras”, TMF, 120:2 (1999), 248–255; Theoret. and Math. Phys., 120:2 (1999), 1019–1025
Citation in format AMSBIB
\Bibitem{GolSok99}
\by I.~Z.~Golubchik, V.~V.~Sokolov
\paper Generalized Heisenberg equations on $\mathbb Z$-graded Lie algebras
\jour TMF
\yr 1999
\vol 120
\issue 2
\pages 248--255
\mathnet{http://mi.mathnet.ru/tmf773}
\crossref{https://doi.org/10.4213/tmf773}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1737290}
\zmath{https://zbmath.org/?q=an:0999.37050}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 120
\issue 2
\pages 1019--1025
\crossref{https://doi.org/10.1007/BF02557409}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000083500600006}
Linking options:
  • https://www.mathnet.ru/eng/tmf773
  • https://doi.org/10.4213/tmf773
  • https://www.mathnet.ru/eng/tmf/v120/i2/p248
  • This publication is cited in the following 14 articles:
    1. Fritzsche B., Kaashoek M.A., Kirstein B., Sakhnovich A.L., “Skew-selfadjoint Dirac systems with rational rectangular Weyl functions: explicit solutions of direct and inverse problems and integrable wave equations”, Math. Nachr., 289:14-15 (2016), 1792–1819  crossref  mathscinet  zmath  isi  elib  scopus
    2. Vladimir S. Gerdjikov, Georgi G. Grahovski, Alexander V. Mikhailov, Tihomir I. Valchev, “Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces”, SIGMA, 7 (2011), 096, 48 pp.  mathnet  crossref  mathscinet
    3. Isaenko E.M., “O differentsialnoi geometrii obobschennogo uravneniya geizenberga”, Nauchnaya zhizn, 2011, no. 1, 29–31 On the differential geometry of generalized heisenberg equation  elib
    4. Aristophanes Dimakis, Folkert Müller-Hoissen, “Bidifferential Calculus Approach to AKNS Hierarchies and Their Solutions”, SIGMA, 6 (2010), 055, 27 pp.  mathnet  crossref  mathscinet
    5. Odesskii, AV, “Integrable matrix equations related to pairs of compatible associative algebras”, Journal of Physics A-Mathematical and General, 39:40 (2006), 12447  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    6. O. V. Efimovskaya, “Factorization of loop algebras over so(4) and integrable nonlinear differential equations”, J. Math. Sci., 144:2 (2007), 3926–3937  mathnet  crossref  mathscinet  zmath  elib
    7. Golubchik IZ, Sokolov VV, “Factorization of the loop algebras and compatible Lie brackets”, Journal of Nonlinear Mathematical Physics, 12 (2005), 343–350, Suppl. 1  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    8. I. Z. Golubchik, V. V. Sokolov, “Factorization of the Loop Algebra and Integrable Toplike Systems”, Theoret. and Math. Phys., 141:1 (2004), 1329–1347  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. Skrypnyk, T, “Deformations of loop algebras and integrable systems: hierarchies of integrable equations”, Journal of Mathematical Physics, 45:12 (2004), 4578  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    10. Sokolov, VV, “On decompositions of the loop algebra over so(3) into a sum of two subalgebras”, Doklady Mathematics, 70:1 (2004), 568  mathscinet  zmath  isi
    11. I. Z. Golubchik, V. V. Sokolov, “Compatible Lie Brackets and Integrable Equations of the Principal Chiral Model Type”, Funct. Anal. Appl., 36:3 (2002), 172–181  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    12. A. A. Bormisov, F. Kh. Mukminov, “Symmetries of Systems of the Hyperbolic Riccati Type”, Theoret. and Math. Phys., 127:1 (2001), 446–459  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    13. I. Z. Golubchik, V. V. Sokolov, “Multicomponent generalization of the hierarchy of the Landau–Lifshitz equation”, Theoret. and Math. Phys., 124:1 (2000), 909–917  mathnet  crossref  crossref  mathscinet  zmath  isi
    14. I. Z. Golubchik, V. V. Sokolov, “One More Kind of the Classical Yang–Baxter Equation”, Funct. Anal. Appl., 34:4 (2000), 296–298  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:504
    Full-text PDF :235
    References:66
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025