Abstract:
We consider a polynomial generalization of the Huang–Davies model in the nonideal Bose gas theory. We prove that the Gaussian dominance condition is fulfilled for all values of the chemical potential. We show that the lower bound for the critical temperature in the Huang–Davies model obtained by the infrared bound method coincides with the exact value of this quantity in the Davies theory. Using the large deviation principle, we prove a possibility of a generalized Bose condensation in the polynomial model.
Citation:
M. Corgini, D. P. Sankovich, N. I. Tanaka, “On a nonideal Bose gas model”, TMF, 120:1 (1999), 130–143; Theoret. and Math. Phys., 120:1 (1999), 921–932
\Bibitem{CorSanTan99}
\by M.~Corgini, D.~P.~Sankovich, N.~I.~Tanaka
\paper On a nonideal Bose gas model
\jour TMF
\yr 1999
\vol 120
\issue 1
\pages 130--143
\mathnet{http://mi.mathnet.ru/tmf765}
\crossref{https://doi.org/10.4213/tmf765}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1737206}
\zmath{https://zbmath.org/?q=an:0941.82003}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 120
\issue 1
\pages 921--932
\crossref{https://doi.org/10.1007/BF02557401}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000083293900010}
Linking options:
https://www.mathnet.ru/eng/tmf765
https://doi.org/10.4213/tmf765
https://www.mathnet.ru/eng/tmf/v120/i1/p130
This publication is cited in the following 5 articles:
A. Bernal, M. Corgini, D. P. Sankovich, “Nonideal Bose Gases: Correlation Inequalities and Bose Condensation”, Theoret. and Math. Phys., 139:3 (2004), 866–877
Corgini M., Torres H., “Infrared bounds and Bose–Einstein condensation: Study of a class of diagonalizable perturbations of the free Boson gas”, Stochastic Analysis and Mathematical Physics (Samp/Anestoc 2002), 2004, 203–216
Corgini M., “Gaussian domination and Bose–Einstein condensation”, Stochastic Analysis and Mathematical Physics II, Trends in Mathematics, 2003, 63–75
Marco Corgini, Stochastic Analysis and Mathematical Physics II, 2003, 63
Corgini M., “Upper bounds on Bogolubov's Inner Product: Quantum systems of anharmonic oscillators”, Stochastic Analysis and Mathematical Physics, Trends in Mathematics, 2000, 33–39