Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1999, Volume 119, Number 3, Pages 475–497
DOI: https://doi.org/10.4213/tmf753
(Mi tmf753)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mayer-series asymptotic catastrophe in classical statistical mechanics

G. I. Kalmykov

P. N. Lebedev Physical Institute, Russian Academy of Sciences
Full-text PDF (301 kB) Citations (2)
References:
Abstract: The problem of an asymptotic catastrophe related to calculating Mayer series coefficients is discussed. The mean squared error of the Monte Carlo estimate for the coefficient of an $n$th power of a variable tends to infinity catastrophically fast as $n$ increases if we use the standard representation for coefficients of a Mayer series and forbid the rapid growth of the calculation volume. In contrast, if we represent these coefficients as tree sums, the error vanishes as $n$ increases. We precisely define the notion of a power-series asymptotic catastrophe that improves the description introduced by Ivanchik. For a nonnegative potential that rapidly decreases at infinity and has a hard core, the standard representation of Mayer coefficients results in the asymptotic catastrophe both in the sense of our approach and in the sense of Ivanchik. Virial coefficients are represented as polynomials in tree sums. These representations resolve the asymptotic catastrophe problem for the case of virial expansions.
Received: 13.05.1998
Revised: 10.12.1998
English version:
Theoretical and Mathematical Physics, 1999, Volume 119, Issue 3, Pages 778–795
DOI: https://doi.org/10.1007/BF02557387
Bibliographic databases:
Language: Russian
Citation: G. I. Kalmykov, “Mayer-series asymptotic catastrophe in classical statistical mechanics”, TMF, 119:3 (1999), 475–497; Theoret. and Math. Phys., 119:3 (1999), 778–795
Citation in format AMSBIB
\Bibitem{Kal99}
\by G.~I.~Kalmykov
\paper Mayer-series asymptotic catastrophe in classical statistical mechanics
\jour TMF
\yr 1999
\vol 119
\issue 3
\pages 475--497
\mathnet{http://mi.mathnet.ru/tmf753}
\crossref{https://doi.org/10.4213/tmf753}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1721469}
\zmath{https://zbmath.org/?q=an:0942.82001}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 119
\issue 3
\pages 778--795
\crossref{https://doi.org/10.1007/BF02557387}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000082143000010}
Linking options:
  • https://www.mathnet.ru/eng/tmf753
  • https://doi.org/10.4213/tmf753
  • https://www.mathnet.ru/eng/tmf/v119/i3/p475
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:405
    Full-text PDF :195
    References:74
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024