Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1999, Volume 119, Number 3, Pages 381–396
DOI: https://doi.org/10.4213/tmf746
(Mi tmf746)
 

This article is cited in 10 scientific papers (total in 10 papers)

Measures on diffeomorphism groups for non-Archimedean manifolds: Group representations and their applications

S. V. Lyudkovskii

General Physics Institute named after A. M. Prokhorov, Russian Academy of Sciences
References:
Abstract: Nondegenerate $\sigma$-additive measures with ranges in $\mathbb R$ and $\mathbb Q_q$ ($q\ne p$ are prime numbers) that are quasi-invariant and pseudodifferentiable with respect to dense subgroups $G'$ are constructed on diffeomorphism and homeomorphism groups $G$ for separable non-Archimedean Banach manifolds $M$ over a local field $\mathbb K$$\mathbb K\supset\mathbb Q_p$, where $\mathbb Q_p$ is the field of $p$-adic numbers. These measures and the associated irreducible representations are used in the non-Archimedean gravitation theory.
Received: 18.06.1998
Revised: 10.02.1999
English version:
Theoretical and Mathematical Physics, 1999, Volume 119, Issue 3, Pages 698–711
DOI: https://doi.org/10.1007/BF02557380
Bibliographic databases:
Language: Russian
Citation: S. V. Lyudkovskii, “Measures on diffeomorphism groups for non-Archimedean manifolds: Group representations and their applications”, TMF, 119:3 (1999), 381–396; Theoret. and Math. Phys., 119:3 (1999), 698–711
Citation in format AMSBIB
\Bibitem{Lud99}
\by S.~V.~Lyudkovskii
\paper Measures on diffeomorphism groups for non-Archimedean manifolds: Group representations and their applications
\jour TMF
\yr 1999
\vol 119
\issue 3
\pages 381--396
\mathnet{http://mi.mathnet.ru/tmf746}
\crossref{https://doi.org/10.4213/tmf746}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1721464}
\zmath{https://zbmath.org/?q=an:0952.58008}
\elib{https://elibrary.ru/item.asp?id=13312039}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 119
\issue 3
\pages 698--711
\crossref{https://doi.org/10.1007/BF02557380}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000082143000003}
\elib{https://elibrary.ru/item.asp?id=13312039}
Linking options:
  • https://www.mathnet.ru/eng/tmf746
  • https://doi.org/10.4213/tmf746
  • https://www.mathnet.ru/eng/tmf/v119/i3/p381
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:370
    Full-text PDF :225
    References:41
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024