Abstract:
For autonomous Hamiltonian systems, the quasi-classical limit ($\hbar\to0$) of the quadratic susceptibility to an external harmonic field is considered. To calculate this limit, the coordinate matrix elements and the quantum transition frequencies are expanded in powers of $\hbar$ up to terms of order $\hbar^2$ based on symmetry relations and sum rules. The quasi-classical limit of the quadratic susceptibility is calculated in terms of classical parameters and can be used to determine the response functions of chaotic systems.
Citation:
P. V. Elyutin, O. V. Smirnova, “On the quasi-classical limit of the quadratic susceptibility”, TMF, 119:1 (1999), 93–104; Theoret. and Math. Phys., 119:1 (1999), 471–480
\Bibitem{ElySmi99}
\by P.~V.~Elyutin, O.~V.~Smirnova
\paper On the quasi-classical limit of the quadratic susceptibility
\jour TMF
\yr 1999
\vol 119
\issue 1
\pages 93--104
\mathnet{http://mi.mathnet.ru/tmf730}
\crossref{https://doi.org/10.4213/tmf730}
\zmath{https://zbmath.org/?q=an:0991.81025}
\elib{https://elibrary.ru/item.asp?id=13311881}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 119
\issue 1
\pages 471--480
\crossref{https://doi.org/10.1007/BF02557345}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000081250900008}
Linking options:
https://www.mathnet.ru/eng/tmf730
https://doi.org/10.4213/tmf730
https://www.mathnet.ru/eng/tmf/v119/i1/p93
This publication is cited in the following 3 articles:
Ivanov M., Bartram D., Smirnova O., “Coherent Control in Strongly Driven Multi-Level Systems: Quantum Vs Classical Features”, Mol. Phys., 110:15-16 (2012), 1801–1805
Smirnova, OV, “Applicability boundaries of the Kramers-Henneberger approximation in the quasi-classical region”, Laser Physics, 10:3 (2000), 741
Smirnova, OV, “Validity of the Kramers-Henneberger approximation”, Journal of Experimental and Theoretical Physics, 90:4 (2000), 609