|
This article is cited in 25 scientific papers (total in 25 papers)
Geometry and multidimensional soliton equations
R. Myrzakulov, A. K. Danlybaeva, G. N. Nugmanova Institute of Physics and Technology, Ministry of Education and Science of the
Republic of Kazakhstan
Abstract:
The connection between the differential geometry of curves and $(2+1)$-dimensional integrable systems is established. The Zakharov equation, the modified Veselov–Novikov equation, the modified Korteweg–de Vries equation, etc., are equivalent in the Lakshmanan sense to $(2+1)$-dimensional spin systems.
Citation:
R. Myrzakulov, A. K. Danlybaeva, G. N. Nugmanova, “Geometry and multidimensional soliton equations”, TMF, 118:3 (1999), 441–451; Theoret. and Math. Phys., 118:3 (1999), 347–356
Linking options:
https://www.mathnet.ru/eng/tmf717https://doi.org/10.4213/tmf717 https://www.mathnet.ru/eng/tmf/v118/i3/p441
|
Statistics & downloads: |
Abstract page: | 710 | Full-text PDF : | 308 | References: | 76 | First page: | 1 |
|