Loading [MathJax]/jax/output/CommonHTML/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1999, Volume 118, Number 3, Pages 347–353
DOI: https://doi.org/10.4213/tmf706
(Mi tmf706)
 

This article is cited in 22 scientific papers (total in 22 papers)

On the spectrum of the Laplacian with frequently alternating boundary conditions

D. I. Borisova, R. R. Gadyl'shinb

a Bashkir State Pedagogical University
b Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Abstract: We consider a boundary problem for the Laplacian in a two-dimensional domain with frequently alternating boundary conditions. The leading terms of the asymptotic expansions of the eigenvalues and the corresponding eigenfunctions are constructed under the assumption that the limiting case is the mixed boundary problem.
English version:
Theoretical and Mathematical Physics, 1999, Volume 118, Issue 3, Pages 272–277
DOI: https://doi.org/10.1007/BF02557321
Bibliographic databases:
Language: Russian
Citation: D. I. Borisov, R. R. Gadyl'shin, “On the spectrum of the Laplacian with frequently alternating boundary conditions”, TMF, 118:3 (1999), 347–353; Theoret. and Math. Phys., 118:3 (1999), 272–277
Citation in format AMSBIB
\Bibitem{BorGad99}
\by D.~I.~Borisov, R.~R.~Gadyl'shin
\paper On the spectrum of the Laplacian with frequently alternating boundary conditions
\jour TMF
\yr 1999
\vol 118
\issue 3
\pages 347--353
\mathnet{http://mi.mathnet.ru/tmf706}
\crossref{https://doi.org/10.4213/tmf706}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1713724}
\zmath{https://zbmath.org/?q=an:0945.35066}
\elib{https://elibrary.ru/item.asp?id=13331139}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 118
\issue 3
\pages 272--277
\crossref{https://doi.org/10.1007/BF02557321}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000080492800004}
Linking options:
  • https://www.mathnet.ru/eng/tmf706
  • https://doi.org/10.4213/tmf706
  • https://www.mathnet.ru/eng/tmf/v118/i3/p347
  • This publication is cited in the following 22 articles:
    1. D. I. Borisov, “Asymptotic Analysis of Boundary-Value Problems for the Laplace Operator with Frequently Alternating Type of Boundary Conditions”, J Math Sci, 277:6 (2023), 841  crossref
    2. D. I. Borisov, “Asimptoticheskii analiz kraevykh zadach dlya operatora Laplasa s chastoi smenoi tipa granichnykh uslovii”, Differentsialnye uravneniya s chastnymi proizvodnymi, SMFN, 67, no. 1, Rossiiskii universitet druzhby narodov, M., 2021, 14–129  mathnet  crossref
    3. Vorobiev A.M., “Resonance Asymptotics For Quantum Waveguides With Semitransparent Multi-Perforated Wall”, Nanosyst.-Phys. Chem. Math., 12:4 (2021), 462–471  crossref  isi
    4. Vorobiev A.M., Trifanova E.S., Popov I.Y., “Resonance Asymptotics For a Pair Quantum Waveguides With Common Semitransparent Perforated Wall”, Nanosyst.-Phys. Chem. Math., 11:6 (2020), 619–627  crossref  isi
    5. Vorobiev A.M., Bagmutov A.S., Popov I A., “On Formal Asymptotic Expansion of Resonance For Quantum Waveguide With Perforated Semitransparent Barrier”, Nanosyst.-Phys. Chem. Math., 10:4 (2019), 415–419  crossref  isi
    6. Bihun R.I., Stasyuk Z.V., Balitskii O.A., “Crossover From Quantum To Classical Electron Transport in Ultrathin Metal Films”, Physica B, 487 (2016), 73–77  crossref  adsnasa  isi  scopus  scopus  scopus
    7. T. F. Sharapov, “On resolvent of multi-dimensional operators with frequent alternation of boundary conditions: critical case”, Ufa Math. J., 8:2 (2016), 65–94  mathnet  crossref  elib
    8. R. I. Bihun, Z. V. Stasyuk, “Impact of Surface Inhomogeneities on Conditions for Charge Transfer in Ultrathin Films of Metals”, Metallofiz. Noveishie Tekhnol., 36:6 (2016), 723  crossref
    9. D. I. Borisov, T. F. Sharapov, “On the Resolvent of Multidimensional Operators with Frequently Alternating Boundary Conditions with the Robin Homogenized Condition”, J Math Sci, 213:4 (2016), 461  crossref
    10. A. G. Chechkina, V. A. Sadovnichy, “Degeneration of Steklov–type boundary conditions in one spectral homogenization problem”, Eurasian Math. J., 6:3 (2015), 13–29  mathnet
    11. V. A. Sadovnichii, A. G. Chechkina, “Ob otsenke sobstvennykh funktsii zadachi tipa Steklova s malym parametrom v sluchae predelnogo vyrozhdeniya spektra”, Ufimsk. matem. zhurn., 3:3 (2011), 127–139  mathnet  zmath
    12. Najar H., Olendski O., “Spectral and localization properties of the Dirichlet wave guide with two concentric Neumann discs”, J. Phys. A: Math. Theor., 44:30 (2011), 305304  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    13. Chechkina A.G., “On Singular Perturbations of a Steklov-Type Problem with Asymptotically Degenerate Spectrum”, Doklady Mathematics, 84:2 (2011), 695–698  crossref  mathscinet  zmath  isi  elib  elib  scopus
    14. Olendski O., Mikhailovska L., “Theory of a curved planar waveguide with Robin boundary conditions”, Physical Review E, 81:3 (2010), 036606  crossref  adsnasa  isi  elib  scopus  scopus  scopus
    15. A. G. Chechkina, “Convergence of solutions and eigenelements of Steklov type boundary value problems with boundary conditions of rapidly varying type”, J Math Sci, 162:3 (2009), 443  crossref
    16. Perez, E, “On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem”, Discrete and Continuous Dynamical Systems-Series B, 7:4 (2007), 859  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    17. Chechkin, GA, “On boundary-value problems for the Laplacian in bounded domains with micro inhomogeneous structure of the boundaries”, Acta Mathematica Sinica-English Series, 23:2 (2007), 237  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    18. Chechkin, GA, “Non-periodic boundary homogenization and “light” concentrated masses”, Indiana University Mathematics Journal, 54:2 (2005), 321  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    19. D. I. Borisov, “Asymptotics and estimates of the convergence rate in a three-dimensional boundary-value problem with rapidly alternating boundary conditions”, Siberian Math. J., 45:2 (2004), 222–240  mathnet  crossref  mathscinet  zmath  isi  elib
    20. D. I. Borisov, “Asymptotics and estimates for the eigenelements of the Laplacian with frequently alternating non-periodic boundary conditions”, Izv. Math., 67:6 (2003), 1101–1148  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:773
    Full-text PDF :274
    References:109
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025