Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1999, Volume 118, Number 2, Pages 248–263
DOI: https://doi.org/10.4213/tmf697
(Mi tmf697)
 

This article is cited in 5 scientific papers (total in 5 papers)

Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces

A. V. Shchepetilov

M. V. Lomonosov Moscow State University, Faculty of Physics
Full-text PDF (266 kB) Citations (5)
References:
Abstract: We consider the quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces. Using the group isometries, we obtain systems of ordinary differential equations for the energy levels. We prove that the Hamiltonian is self-adjoint for several interaction potentials. For the sphere, a number of energy series are evaluated for bodies with equal masses.
Received: 05.06.1998
English version:
Theoretical and Mathematical Physics, 1999, Volume 118, Issue 2, Pages 197–208
DOI: https://doi.org/10.1007/BF02557312
Bibliographic databases:
Language: Russian
Citation: A. V. Shchepetilov, “Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces”, TMF, 118:2 (1999), 248–263; Theoret. and Math. Phys., 118:2 (1999), 197–208
Citation in format AMSBIB
\Bibitem{Shc99}
\by A.~V.~Shchepetilov
\paper Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces
\jour TMF
\yr 1999
\vol 118
\issue 2
\pages 248--263
\mathnet{http://mi.mathnet.ru/tmf697}
\crossref{https://doi.org/10.4213/tmf697}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1702931}
\zmath{https://zbmath.org/?q=an:0966.81013}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 118
\issue 2
\pages 197--208
\crossref{https://doi.org/10.1007/BF02557312}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079807100006}
Linking options:
  • https://www.mathnet.ru/eng/tmf697
  • https://doi.org/10.4213/tmf697
  • https://www.mathnet.ru/eng/tmf/v118/i2/p248
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:507
    Full-text PDF :214
    References:108
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024