Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 172, Number 3, Pages 344–354
DOI: https://doi.org/10.4213/tmf6962
(Mi tmf6962)
 

A strong law of large numbers for random biased connected graphs

Zhonghao Xua, Ya. Higuchib, Chunhuac

a School of Finance and Statistics, East China Normal University, Shanghai, China
b Department of Mathematics, Kobe University, Kobe, Japan
c School of Applied Mathematics, Beijing Normal University, Zhuhai, China
References:
Abstract: We consider a class of random connected graphs with random vertices and random edges in which the randomness of the vertices is determined by a continuous probability distribution and the randomness of the edges is determined by a connection function. We derive a strong law of large numbers on the total lengths of all random edges for a random biased connected graph that is a generalization of a directed $k$-nearest-neighbor graph.
Keywords: random connected graph, random biased connected graph, law of large numbers.
Received: 17.01.2012
English version:
Theoretical and Mathematical Physics, 2012, Volume 172, Issue 3, Pages 1177–1186
DOI: https://doi.org/10.1007/s11232-012-0106-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Zhonghao Xu, Ya. Higuchi, Chunhua, “A strong law of large numbers for random biased connected graphs”, TMF, 172:3 (2012), 344–354; Theoret. and Math. Phys., 172:3 (2012), 1177–1186
Citation in format AMSBIB
\Bibitem{XuHigHu12}
\by Zhonghao~Xu, Ya.~Higuchi, Chunhua
\paper A~strong law of large numbers for random biased connected graphs
\jour TMF
\yr 2012
\vol 172
\issue 3
\pages 344--354
\mathnet{http://mi.mathnet.ru/tmf6962}
\crossref{https://doi.org/10.4213/tmf6962}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3168741}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...172.1177X}
\elib{https://elibrary.ru/item.asp?id=20732515}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 172
\issue 3
\pages 1177--1186
\crossref{https://doi.org/10.1007/s11232-012-0106-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309725400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865580118}
Linking options:
  • https://www.mathnet.ru/eng/tmf6962
  • https://doi.org/10.4213/tmf6962
  • https://www.mathnet.ru/eng/tmf/v172/i3/p344
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:356
    Full-text PDF :153
    References:45
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024