Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 172, Number 2, Pages 275–284
DOI: https://doi.org/10.4213/tmf6961
(Mi tmf6961)
 

This article is cited in 13 scientific papers (total in 13 papers)

Wave breaking in solutions of the dispersionless Kadomtsev–Petviashvili equation at a finite time

S. V. Manakova, P. M. Santinibc

a Landau Institute for Theoretical Physics, Moscow, Russia
b Dipartimento di Fisica, Universitá di Rome "La Sapienza", Rome, Italy
c Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Rome, Italy
References:
Abstract: We discuss some interesting aspects of the wave breaking in localized solutions of the dispersionless Kadomtsev–Petviashvili equation, an integrable partial differential equation describing the propagation of weakly nonlinear, quasi-one-dimensional waves in $2+1$ dimensions, which arise in several physical contexts such as acoustics, plasma physics, and hydrodynamics. For this, we use an inverse spectral transform for multidimensional vector fields that we recently developed and, in particular, the associated inverse problem, a nonlinear Riemann–Hilbert problem on the real axis. In particular, we discuss how the derivative of the solution blows up at the first breaking point in any direction of the plane $(x,y)$ except in the transverse breaking direction and how the solution becomes three-valued in a compact region of the plane $(x,y)$ after the wave breaking.
Keywords: integrable nonlinear dispersionless partial differential equation, wave breaking in multiple dimensions, weakly nonlinear quasi-one-dimensional wave.
English version:
Theoretical and Mathematical Physics, 2012, Volume 172, Issue 2, Pages 1118–1126
DOI: https://doi.org/10.1007/s11232-012-0100-z
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. V. Manakov, P. M. Santini, “Wave breaking in solutions of the dispersionless Kadomtsev–Petviashvili equation at a finite time”, TMF, 172:2 (2012), 275–284; Theoret. and Math. Phys., 172:2 (2012), 1118–1126
Citation in format AMSBIB
\Bibitem{ManSan12}
\by S.~V.~Manakov, P.~M.~Santini
\paper Wave breaking in solutions of the~dispersionless Kadomtsev--Petviashvili equation at a~finite time
\jour TMF
\yr 2012
\vol 172
\issue 2
\pages 275--284
\mathnet{http://mi.mathnet.ru/tmf6961}
\crossref{https://doi.org/10.4213/tmf6961}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3170085}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...172.1118M}
\elib{https://elibrary.ru/item.asp?id=20732508}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 172
\issue 2
\pages 1118--1126
\crossref{https://doi.org/10.1007/s11232-012-0100-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309232700008}
\elib{https://elibrary.ru/item.asp?id=20486452}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866866069}
Linking options:
  • https://www.mathnet.ru/eng/tmf6961
  • https://doi.org/10.4213/tmf6961
  • https://www.mathnet.ru/eng/tmf/v172/i2/p275
  • This publication is cited in the following 13 articles:
    1. Klein Ch., Stoilov N., “Numerical Study of Break-Up in Solutions to the Dispersionless Kadomtsev-Petviashvili Equation”, Lett. Math. Phys., 111:5 (2021), 113  crossref  mathscinet  isi  scopus
    2. J. Eggers, T. Grava, M. A. Herrada, G. Pitton, “Spatial structure of shock formation”, J. Fluid Mech., 820 (2017), 208–231  crossref  mathscinet  zmath  isi
    3. M. J. Ablowitz, G. Biondini, Q. Wang, “Whitham modulation theory for the Kadomtsev–Petviashvili equation”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 473:2204 (2017), 20160695  crossref  mathscinet  isi
    4. M. J. Ablowitz, A. Demirci, Y.-P. Ma, “Dispersive shock waves in the Kadomtsev–Petviashvili and two dimensional Benjamin–Ono equations”, Physica D, 333:SI (2016), 84–98  crossref  mathscinet  isi  elib  scopus
    5. B. Dubrovin, T. Grava, C. Klein, “On critical behaviour in generalized Kadomtsev–Petviashvili equations”, Physica D, 333:SI (2016), 157–170  crossref  mathscinet  isi  elib  scopus
    6. F. Santucci, P. M. Santini, “On the dispersionless Kadomtsev–Petviashvili equation with arbitrary nonlinearity and dimensionality: exact solutions, longtime asymptotics of the Cauchy problem, wave breaking and shocks”, J. Phys. A-Math. Theor., 49:40 (2016), 405203  crossref  mathscinet  zmath  isi  elib  scopus
    7. T. Grava, C. Klein, J. Eggers, “Shock formation in the dispersionless Kadomtsev–Petviashvili equation”, Nonlinearity, 29:4 (2016), 1384–1416  crossref  mathscinet  zmath  isi  elib  scopus
    8. A. I. Aptekarev, “The Mhaskar–Saff variational principle and location of the shocks of certain hyperbolic equations”, Modern Trends in Constructive Function Theory, Contemporary Mathematics, 661, ed. D. Hardin, D. Lubinsky, B. Simanek, Amer. Math. Soc., 2016, 167+  crossref  mathscinet  zmath  isi
    9. P. G. Grinevich, P. M. Santini, D. Wu, “The Cauchy problem for the Pavlov equation”, Nonlinearity, 28:11 (2015), 3709–3754  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. G Yi, P M Santini, “The inverse spectral transform for the Dunajski hierarchy and some of its reductions: I. Cauchy problem and longtime behavior of solutions”, J. Phys. A: Math. Theor., 48:21 (2015), 215203  crossref
    11. Sh. Li, Y. He, Ya. Long, “Joint application of bilinear operator and F-expansion method for (2+1)-dimensional Kadomtsev–Petviashvili equation”, Math. Probl. Eng., 2014, 156483  crossref  mathscinet  isi  scopus
    12. P. G. Grinevich, P. M. Santini, “Holomorphic eigenfunctions of the vector field associated with the dispersionless Kadomtsev–Petviashvili equation”, J. Differ. Equ., 255:7 (2013), 1469–1491  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. C. Klein, K. Roidot, “Numerical study of shock formation in the dispersionless Kadomtsev–Petviashvili equation and dispersive regularizations”, Physica D, 265 (2013), 1–25  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:654
    Full-text PDF :296
    References:82
    First page:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025