Abstract:
We discuss some interesting aspects of the wave breaking in localized solutions of the dispersionless Kadomtsev–Petviashvili equation, an integrable partial differential equation describing the propagation of weakly nonlinear, quasi-one-dimensional waves in $2+1$ dimensions, which arise in several physical contexts such as acoustics, plasma physics, and hydrodynamics. For this, we use an inverse spectral transform for multidimensional vector fields that we recently developed and, in particular, the associated inverse problem, a nonlinear Riemann–Hilbert problem on the real axis. In particular, we discuss how the derivative of the solution blows up at the first breaking point in any direction of the plane $(x,y)$ except in the transverse breaking direction and how the solution becomes three-valued in a compact region of the plane $(x,y)$ after the wave breaking.
Citation:
S. V. Manakov, P. M. Santini, “Wave breaking in solutions of the dispersionless Kadomtsev–Petviashvili equation at a finite time”, TMF, 172:2 (2012), 275–284; Theoret. and Math. Phys., 172:2 (2012), 1118–1126
\Bibitem{ManSan12}
\by S.~V.~Manakov, P.~M.~Santini
\paper Wave breaking in solutions of the~dispersionless Kadomtsev--Petviashvili equation at a~finite time
\jour TMF
\yr 2012
\vol 172
\issue 2
\pages 275--284
\mathnet{http://mi.mathnet.ru/tmf6961}
\crossref{https://doi.org/10.4213/tmf6961}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3170085}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...172.1118M}
\elib{https://elibrary.ru/item.asp?id=20732508}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 172
\issue 2
\pages 1118--1126
\crossref{https://doi.org/10.1007/s11232-012-0100-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309232700008}
\elib{https://elibrary.ru/item.asp?id=20486452}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866866069}
Linking options:
https://www.mathnet.ru/eng/tmf6961
https://doi.org/10.4213/tmf6961
https://www.mathnet.ru/eng/tmf/v172/i2/p275
This publication is cited in the following 13 articles:
Klein Ch., Stoilov N., “Numerical Study of Break-Up in Solutions to the Dispersionless Kadomtsev-Petviashvili Equation”, Lett. Math. Phys., 111:5 (2021), 113
J. Eggers, T. Grava, M. A. Herrada, G. Pitton, “Spatial structure of shock formation”, J. Fluid Mech., 820 (2017), 208–231
M. J. Ablowitz, G. Biondini, Q. Wang, “Whitham modulation theory for the Kadomtsev–Petviashvili equation”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 473:2204 (2017), 20160695
M. J. Ablowitz, A. Demirci, Y.-P. Ma, “Dispersive shock waves in the Kadomtsev–Petviashvili and two dimensional Benjamin–Ono equations”, Physica D, 333:SI (2016), 84–98
B. Dubrovin, T. Grava, C. Klein, “On critical behaviour in generalized Kadomtsev–Petviashvili equations”, Physica D, 333:SI (2016), 157–170
F. Santucci, P. M. Santini, “On the dispersionless Kadomtsev–Petviashvili equation with arbitrary nonlinearity and dimensionality: exact solutions, longtime asymptotics of the Cauchy problem, wave breaking and shocks”, J. Phys. A-Math. Theor., 49:40 (2016), 405203
T. Grava, C. Klein, J. Eggers, “Shock formation in the dispersionless Kadomtsev–Petviashvili equation”, Nonlinearity, 29:4 (2016), 1384–1416
A. I. Aptekarev, “The Mhaskar–Saff variational principle and location of the shocks of certain hyperbolic equations”, Modern Trends in Constructive Function Theory, Contemporary Mathematics, 661, ed. D. Hardin, D. Lubinsky, B. Simanek, Amer. Math. Soc., 2016, 167+
P. G. Grinevich, P. M. Santini, D. Wu, “The Cauchy problem for the Pavlov equation”, Nonlinearity, 28:11 (2015), 3709–3754
G Yi, P M Santini, “The inverse spectral transform for the Dunajski hierarchy and some of its reductions: I. Cauchy problem and longtime behavior of solutions”, J. Phys. A: Math. Theor., 48:21 (2015), 215203
Sh. Li, Y. He, Ya. Long, “Joint application of bilinear operator and F-expansion method for (2+1)-dimensional Kadomtsev–Petviashvili equation”, Math. Probl. Eng., 2014, 156483
P. G. Grinevich, P. M. Santini, “Holomorphic eigenfunctions of the vector field associated with the dispersionless Kadomtsev–Petviashvili equation”, J. Differ. Equ., 255:7 (2013), 1469–1491
C. Klein, K. Roidot, “Numerical study of shock formation in the dispersionless Kadomtsev–Petviashvili equation and dispersive regularizations”, Physica D, 265 (2013), 1–25