Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 172, Number 2, Pages 224–235
DOI: https://doi.org/10.4213/tmf6953
(Mi tmf6953)
 

This article is cited in 4 scientific papers (total in 4 papers)

Detection and construction of an elliptic solution of the complex cubic–quintic Ginzburg–Landau equation

R. Conteab, Tuen-Wai Ngb

a LRC MESO, Centre de mathématiques et de leurs applications et CEA-DAM, École normale supérieure de Cachan, Cachan, France
b Department of Mathematics, Faculty of Science, The University of Hong Kong, Hong Kong
Full-text PDF (481 kB) Citations (4)
References:
Abstract: In evolution equations for a complex amplitude, the equation for the phase is much more intricate than for the amplitude. Nevertheless, general methods should be applicable to both variables. In the example of the traveling-wave reduction of the complex cubic–quintic Ginzburg–Landau (CGL5) equation, we explain how to overcome the difficulties arising in two methods: (1) the criterion that the sum of residues of an elliptic solution is zero and (2) the construction of a first-order differential equation admitting a given equation as a differential consequence (subequation method).
Keywords: elliptic solution, residue criterion, subequation method, complex quintic Ginzburg–Landau equation.
English version:
Theoretical and Mathematical Physics, 2012, Volume 172, Issue 2, Pages 1073–1084
DOI: https://doi.org/10.1007/s11232-012-0096-4
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: R. Conte, Tuen-Wai Ng, “Detection and construction of an elliptic solution of the complex cubic–quintic Ginzburg–Landau equation”, TMF, 172:2 (2012), 224–235; Theoret. and Math. Phys., 172:2 (2012), 1073–1084
Citation in format AMSBIB
\Bibitem{ConNg12}
\by R.~Conte, Tuen-Wai~Ng
\paper Detection and construction of an~elliptic solution of the~complex cubic--quintic Ginzburg--Landau equation
\jour TMF
\yr 2012
\vol 172
\issue 2
\pages 224--235
\mathnet{http://mi.mathnet.ru/tmf6953}
\crossref{https://doi.org/10.4213/tmf6953}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3170081}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...172.1073C}
\elib{https://elibrary.ru/item.asp?id=20732504}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 172
\issue 2
\pages 1073--1084
\crossref{https://doi.org/10.1007/s11232-012-0096-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309232700004}
\elib{https://elibrary.ru/item.asp?id=20717524}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866885557}
Linking options:
  • https://www.mathnet.ru/eng/tmf6953
  • https://doi.org/10.4213/tmf6953
  • https://www.mathnet.ru/eng/tmf/v172/i2/p224
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:582
    Full-text PDF :188
    References:56
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024