Abstract:
In evolution equations for a complex amplitude, the equation for the phase is much more intricate than for the amplitude. Nevertheless, general methods should be applicable to both variables. In the example of the traveling-wave reduction of the complex cubic–quintic Ginzburg–Landau (CGL5) equation, we explain how to overcome the difficulties arising in two methods: (1) the criterion that the sum of residues of an elliptic solution is zero and (2) the construction of a first-order differential equation admitting a given equation as a differential consequence (subequation method).
Citation:
R. Conte, Tuen-Wai Ng, “Detection and construction of an elliptic solution of the complex cubic–quintic Ginzburg–Landau equation”, TMF, 172:2 (2012), 224–235; Theoret. and Math. Phys., 172:2 (2012), 1073–1084
\Bibitem{ConNg12}
\by R.~Conte, Tuen-Wai~Ng
\paper Detection and construction of an~elliptic solution of the~complex cubic--quintic Ginzburg--Landau equation
\jour TMF
\yr 2012
\vol 172
\issue 2
\pages 224--235
\mathnet{http://mi.mathnet.ru/tmf6953}
\crossref{https://doi.org/10.4213/tmf6953}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3170081}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...172.1073C}
\elib{https://elibrary.ru/item.asp?id=20732504}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 172
\issue 2
\pages 1073--1084
\crossref{https://doi.org/10.1007/s11232-012-0096-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309232700004}
\elib{https://elibrary.ru/item.asp?id=20717524}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866885557}
Linking options:
https://www.mathnet.ru/eng/tmf6953
https://doi.org/10.4213/tmf6953
https://www.mathnet.ru/eng/tmf/v172/i2/p224
This publication is cited in the following 4 articles:
Robert Conte, Micheline Musette, Tuen Wai Ng, Chengfa Wu, “All meromorphic traveling waves of cubic and quintic complex Ginzburg-Landau equations”, Physics Letters A, 481 (2023), 129024
Gu Y., Wu Ch., Yao X., Yuan W., “Characterizations of All Real Solutions For the Kdv Equation and W-R”, Appl. Math. Lett., 107 (2020), 106446
Robert Conte, Micheline Musette, Mathematical Physics Studies, The Painlevé Handbook, 2020, 51
Conte R., Ng T.-W., “Meromorphic traveling wave solutions of the complex cubic-quintic Ginzburg-Landau equation”, Acta Appl. Math., 122:1 (2012), 153–166