Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 172, Number 2, Pages 308–322
DOI: https://doi.org/10.4213/tmf6952
(Mi tmf6952)
 

This article is cited in 4 scientific papers (total in 4 papers)

Envelope soliton resonances and Broer–Kaup-type non-Madelung fluids

O. K. Pashaev

Department of Mathematics, Izmir Institute of Technology, Izmir, Turkey
Full-text PDF (532 kB) Citations (4)
References:
Abstract: We derive an extended nonlinear dispersion for envelope soliton equations and also find generalized equations of the nonlinear Schrödinger (NLS) type associated with this dispersion. We show that space dilatations imply hyperbolic rotation of the pair of dual equations, the NLS and resonant NLS (RNLS) equations. For the RNLS equation, in addition to the Madelung fluid representation, we find an alternative non-Madelung fluid system in the form of a Broer–Kaup system. Using the bilinear form for the RNLS equation, we construct the soliton resonances for the Broer–Kaup system and find the corresponding integrals of motion and existence conditions for the soliton resonance and also a geometric interpretation in terms of a pseudo-Riemannian surface of constant curvature. This approach can be extended to construct a resonance version and the corresponding Broer–Kaup-type representation for any envelope soliton equation. As an example, we derive a new modified Broer–Kaup system from the modified NLS equation.
Keywords: soliton resonance, Madelung fluid, Broer–Kaup system, envelope soliton, resonant NLS.
English version:
Theoretical and Mathematical Physics, 2012, Volume 172, Issue 2, Pages 1147–1159
DOI: https://doi.org/10.1007/s11232-012-0103-9
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: O. K. Pashaev, “Envelope soliton resonances and Broer–Kaup-type non-Madelung fluids”, TMF, 172:2 (2012), 308–322; Theoret. and Math. Phys., 172:2 (2012), 1147–1159
Citation in format AMSBIB
\Bibitem{Pas12}
\by O.~K.~Pashaev
\paper Envelope soliton resonances and Broer--Kaup-type non-Madelung fluids
\jour TMF
\yr 2012
\vol 172
\issue 2
\pages 308--322
\mathnet{http://mi.mathnet.ru/tmf6952}
\crossref{https://doi.org/10.4213/tmf6952}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3170088}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...172.1147P}
\elib{https://elibrary.ru/item.asp?id=20732511}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 172
\issue 2
\pages 1147--1159
\crossref{https://doi.org/10.1007/s11232-012-0103-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309232700011}
\elib{https://elibrary.ru/item.asp?id=20804544}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866839722}
Linking options:
  • https://www.mathnet.ru/eng/tmf6952
  • https://doi.org/10.4213/tmf6952
  • https://www.mathnet.ru/eng/tmf/v172/i2/p308
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:381
    Full-text PDF :178
    References:69
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024