Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 172, Number 1, Pages 73–99
DOI: https://doi.org/10.4213/tmf6930
(Mi tmf6930)
 

This article is cited in 26 scientific papers (total in 26 papers)

Three-dimensional extensions of the Alday–Gaiotto–Tachikawa relation

D. V. Galakhovab, A. D. Mironovca, A. Yu. Morozova, A. V. Smirnova

a Institute for Theoretical and Experimental Physics, Moscow, Russia
b Moscow Institute of Physics and Technology, Dolgoprudny, Russia
c Lebedev Physical Institute, RAS, Moscow, Russia
References:
Abstract: An extension of the two-dimensional (2d) Alday–Gaiotto–Tachikawa (AGT) relation to three dimensions starts from relating the theory on the domain wall between some two $S$-dual supersymmetric Yang–Mills (SYM) models to the 3d Chern–Simons (CS) theory. The simplest case of such a relation would presumably connect traces of the modular kernels in 2d conformal theory with knot invariants. Indeed, the two quantities are very similar, especially if represented as integrals of quantum dilogarithms. But there are also various differences, especially in the “conservation laws” for the integration variables holding for the monodromy traces but not for the knot invariants. We also consider another possibility: interpreting knot invariants as solutions of the Baxter equations for the relativistic Toda system. This implies another AGT-like relation: between the 3d CS theory and the Nekrasov–Shatashvili limit of the 5d SYM theory.
Keywords: Alday–Gaiotto–Tachikawa relation, Chern–Simons theory, knot invariant.
Received: 09.07.2011
English version:
Theoretical and Mathematical Physics, 2012, Volume 172, Issue 1, Pages 939–962
DOI: https://doi.org/10.1007/s11232-012-0088-4
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. V. Galakhov, A. D. Mironov, A. Yu. Morozov, A. V. Smirnov, “Three-dimensional extensions of the Alday–Gaiotto–Tachikawa relation”, TMF, 172:1 (2012), 73–99; Theoret. and Math. Phys., 172:1 (2012), 939–962
Citation in format AMSBIB
\Bibitem{GalMirMor12}
\by D.~V.~Galakhov, A.~D.~Mironov, A.~Yu.~Morozov, A.~V.~Smirnov
\paper Three-dimensional extensions of the~Alday--Gaiotto--Tachikawa relation
\jour TMF
\yr 2012
\vol 172
\issue 1
\pages 73--99
\mathnet{http://mi.mathnet.ru/tmf6930}
\crossref{https://doi.org/10.4213/tmf6930}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3170055}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...172..939G}
\elib{https://elibrary.ru/item.asp?id=20732495}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 172
\issue 1
\pages 939--962
\crossref{https://doi.org/10.1007/s11232-012-0088-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000307309800006}
\elib{https://elibrary.ru/item.asp?id=20472979}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865605472}
Linking options:
  • https://www.mathnet.ru/eng/tmf6930
  • https://doi.org/10.4213/tmf6930
  • https://www.mathnet.ru/eng/tmf/v172/i1/p73
  • This publication is cited in the following 26 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:686
    Full-text PDF :201
    References:61
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024