Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 171, Number 1, Pages 44–64
DOI: https://doi.org/10.4213/tmf6929
(Mi tmf6929)
 

Discrete spectrum of Hamiltonians of some quantum system models

G. M. Zhislin

Research Radio-Physical Institute, Nizhny Novgorod, Russia
References:
Abstract: We study the discrete spectrum of the Hamiltonian $H_0[Z_1]$ of relative motion of an $n$-particle quantum system $Z_1$ consisting of mutually identical particles of two types. The interaction of the first-type particles is described by a short-range potential $W_1$, the interaction of the second-type particles is described by a long-range potential $W_2$, and the interaction of particles of different types is described by a negative long-range potential $W_3$. Under some assumptions about the potentials $W_2$ and $W_3$, we demonstrate that the discrete spectrum of the operator $H_0[Z_1]$ is infinite both with and without taking the permutation symmetry into account.
Keywords: multiparticle Hamiltonian, discrete spectrum, permutation symmetry, mathematical quantum system model.
Received: 30.06.2011
Revised: 12.10.2011
English version:
Theoretical and Mathematical Physics, 2012, Volume 171, Issue 1, Pages 458–477
DOI: https://doi.org/10.1007/s11232-012-0045-2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. M. Zhislin, “Discrete spectrum of Hamiltonians of some quantum system models”, TMF, 171:1 (2012), 44–64; Theoret. and Math. Phys., 171:1 (2012), 458–477
Citation in format AMSBIB
\Bibitem{Zhi12}
\by G.~M.~Zhislin
\paper Discrete spectrum of Hamiltonians of some quantum system models
\jour TMF
\yr 2012
\vol 171
\issue 1
\pages 44--64
\mathnet{http://mi.mathnet.ru/tmf6929}
\crossref{https://doi.org/10.4213/tmf6929}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3168860}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...171..458Z}
\elib{https://elibrary.ru/item.asp?id=20732446}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 171
\issue 1
\pages 458--477
\crossref{https://doi.org/10.1007/s11232-012-0045-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303876200005}
\elib{https://elibrary.ru/item.asp?id=17984525}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860635791}
Linking options:
  • https://www.mathnet.ru/eng/tmf6929
  • https://doi.org/10.4213/tmf6929
  • https://www.mathnet.ru/eng/tmf/v171/i1/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:518
    Full-text PDF :193
    References:80
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024