|
This article is cited in 2 scientific papers (total in 2 papers)
Stationary Schrödinger equation in nonrelativistic quantum mechanics and the functional integral
G. V. Efimov Joint Institute for Nuclear Research, Dubna, Russia
Abstract:
We formulate a method for representing solutions of homogeneous second-order equations in the form of a functional integral or path integral. As an example, we derive solutions of second-order equations with constant coefficients and a linear potential. The method can be used to find general solutions of the stationary Schrödinger equation. We show how to find the spectrum and eigenfunctions of the quantum oscillator equation. We obtain a solution of the stationary Schrödinger equation in the semiclassical approximation, without a singularity at the turning point. In that approximation, we find the coefficient of transmission through a potential barrier. We obtain a representation for the elastic potential scattering amplitude in the form of a functional integral.
Keywords:
second-order homogeneous equation, functional integral, stationary Schrödinger equation, semiclassical approximation, elastic potential scattering amplitude.
Received: 22.06.2011
Citation:
G. V. Efimov, “Stationary Schrödinger equation in nonrelativistic quantum mechanics and the functional integral”, TMF, 171:3 (2012), 452–474; Theoret. and Math. Phys., 171:3 (2012), 812–831
Linking options:
https://www.mathnet.ru/eng/tmf6926https://doi.org/10.4213/tmf6926 https://www.mathnet.ru/eng/tmf/v171/i3/p452
|
Statistics & downloads: |
Abstract page: | 902 | Full-text PDF : | 554 | References: | 72 | First page: | 39 |
|