Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 171, Number 3, Pages 452–474
DOI: https://doi.org/10.4213/tmf6926
(Mi tmf6926)
 

This article is cited in 2 scientific papers (total in 2 papers)

Stationary Schrödinger equation in nonrelativistic quantum mechanics and the functional integral

G. V. Efimov

Joint Institute for Nuclear Research, Dubna, Russia
Full-text PDF (499 kB) Citations (2)
References:
Abstract: We formulate a method for representing solutions of homogeneous second-order equations in the form of a functional integral or path integral. As an example, we derive solutions of second-order equations with constant coefficients and a linear potential. The method can be used to find general solutions of the stationary Schrödinger equation. We show how to find the spectrum and eigenfunctions of the quantum oscillator equation. We obtain a solution of the stationary Schrödinger equation in the semiclassical approximation, without a singularity at the turning point. In that approximation, we find the coefficient of transmission through a potential barrier. We obtain a representation for the elastic potential scattering amplitude in the form of a functional integral.
Keywords: second-order homogeneous equation, functional integral, stationary Schrödinger equation, semiclassical approximation, elastic potential scattering amplitude.
Received: 22.06.2011
English version:
Theoretical and Mathematical Physics, 2012, Volume 171, Issue 3, Pages 812–831
DOI: https://doi.org/10.1007/s11232-012-0077-7
Bibliographic databases:
Language: Russian
Citation: G. V. Efimov, “Stationary Schrödinger equation in nonrelativistic quantum mechanics and the functional integral”, TMF, 171:3 (2012), 452–474; Theoret. and Math. Phys., 171:3 (2012), 812–831
Citation in format AMSBIB
\Bibitem{Efi12}
\by G.~V.~Efimov
\paper Stationary Schr\"odinger equation in nonrelativistic quantum mechanics and the~functional integral
\jour TMF
\yr 2012
\vol 171
\issue 3
\pages 452--474
\mathnet{http://mi.mathnet.ru/tmf6926}
\crossref{https://doi.org/10.4213/tmf6926}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3168726}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...171..812E}
\elib{https://elibrary.ru/item.asp?id=20732482}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 171
\issue 3
\pages 812--831
\crossref{https://doi.org/10.1007/s11232-012-0077-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000306072900008}
\elib{https://elibrary.ru/item.asp?id=20477747}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864090257}
Linking options:
  • https://www.mathnet.ru/eng/tmf6926
  • https://doi.org/10.4213/tmf6926
  • https://www.mathnet.ru/eng/tmf/v171/i3/p452
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:902
    Full-text PDF :554
    References:72
    First page:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024