Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 171, Number 1, Pages 124–134
DOI: https://doi.org/10.4213/tmf6916
(Mi tmf6916)
 

This article is cited in 4 scientific papers (total in 4 papers)

Spectral dependence of the localization degree in the one-dimensional disordered Lloyd model

G. G. Kozlov

Fock Institute of Physics, St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (495 kB) Citations (4)
References:
Abstract: We calculate the Anderson criterion and the spectral dependence of the degree of localization in the first nonvanishing approximation with respect to disorder for one-dimensional diagonally disordered models with a site energy distribution function that has no finite even moments higher than the zeroth. For this class of models (for which the usual perturbation theory is inapplicable), we show that the perturbation theory can be consistently constructed for the joint statistics of advanced and retarded Green's functions. Calculations for the Lloyd model show that the Anderson criterion in this case is a linear (not quadratic as usual) function of the disorder degree. We illustrate the calculations with computer experiments.
Keywords: Anderson localization, one-dimensional disordered system, Green's function.
Received: 19.05.2011
English version:
Theoretical and Mathematical Physics, 2012, Volume 171, Issue 1, Pages 531–540
DOI: https://doi.org/10.1007/s11232-012-0051-4
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. G. Kozlov, “Spectral dependence of the localization degree in the one-dimensional disordered Lloyd model”, TMF, 171:1 (2012), 124–134; Theoret. and Math. Phys., 171:1 (2012), 531–540
Citation in format AMSBIB
\Bibitem{Koz12}
\by G.~G.~Kozlov
\paper Spectral dependence of the~localization degree in the~one-dimensional disordered Lloyd model
\jour TMF
\yr 2012
\vol 171
\issue 1
\pages 124--134
\mathnet{http://mi.mathnet.ru/tmf6916}
\crossref{https://doi.org/10.4213/tmf6916}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3168866}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...171..531K}
\elib{https://elibrary.ru/item.asp?id=20732452}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 171
\issue 1
\pages 531--540
\crossref{https://doi.org/10.1007/s11232-012-0051-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303876200011}
\elib{https://elibrary.ru/item.asp?id=17984473}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860627385}
Linking options:
  • https://www.mathnet.ru/eng/tmf6916
  • https://doi.org/10.4213/tmf6916
  • https://www.mathnet.ru/eng/tmf/v171/i1/p124
  • This publication is cited in the following 4 articles:
    1. Mendez-Bermudez J.A., Aguilar-Sanchez R., “Information-Length Scaling in a Generalized One-Dimensional Lloyd'S Model”, Entropy, 20:4 (2018), 300  crossref  isi
    2. Mendez-Bermudez J.A., Martinez-Mendoza A.J., Gopar V.A., Varga I., “Lloyd-Model Generalization: Conductance Fluctuations in One-Dimensional Disordered Systems”, Phys. Rev. E, 93:1 (2016), 012135  crossref  mathscinet  adsnasa  isi
    3. G. G. Kozlov, “Calculation of spectral dependence of Anderson criterion for 1D system with correlated diagonal disorder”, Theoret. and Math. Phys., 179:1 (2014), 500–508  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. G. G. Kozlov, “Correlated Lloyd model: Exact solution”, Theoret. and Math. Phys., 181:2 (2014), 1396–1404  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:404
    Full-text PDF :174
    References:64
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025