Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 171, Number 2, Pages 303–311
DOI: https://doi.org/10.4213/tmf6905
(Mi tmf6905)
 

This article is cited in 2 scientific papers (total in 2 papers)

An $\hbar$-dependent formulation of the Kadomtsev–Petviashvili hierarchy

K. Takasakia, T. Takebeb

a Graduate School of Human and Environmental Studies, Kyoto University, Yoshida, Sakyo, Kyoto, Japan
b Faculty of Mathematics, Higher School of Economics, Moscow, Russia
Full-text PDF (392 kB) Citations (2)
References:
Abstract: We briefly review a recursive construction of $\hbar$-dependent solutions of the Kadomtsev–Petviashvili hierarchy. We give recurrence relations for the coefficients $X_n$ of an $\hbar$-expansion of the operator $X=X_0+\hbar X_1+\hbar^2X_2+\cdots$ for which the dressing operator $W$ is expressed in the exponential form $W=e^{X/\hbar}$. The wave function $\Psi$ associated with $W$ turns out to have the WKB {(}Wentzel–Kramers–Brillouin{\rm)} form $\Psi=e^{S/\hbar}$, and the coefficients $S_n$ of the $\hbar$-expansion $S=S_0+\hbar S_1+\hbar^2S_2+\cdots$ are also determined by a set of recurrence relations. We use this WKB form to show that the associated tau function has an $\hbar$-expansion of the form $\ln\tau=\hbar^{-2}F_0+ \hbar^{-1}F_1+F_2+\dots$.
Keywords: $\hbar$-expansion, Riemann–Hilbert problem, quantization, recurrence relation.
Received: 30.04.2011
English version:
Theoretical and Mathematical Physics, 2012, Volume 171, Issue 2, Pages 683–690
DOI: https://doi.org/10.1007/s11232-012-0065-y
Bibliographic databases:
Language: Russian
Citation: K. Takasaki, T. Takebe, “An $\hbar$-dependent formulation of the Kadomtsev–Petviashvili hierarchy”, TMF, 171:2 (2012), 303–311; Theoret. and Math. Phys., 171:2 (2012), 683–690
Citation in format AMSBIB
\Bibitem{TakTak12}
\by K.~Takasaki, T.~Takebe
\paper An~$\hbar$-dependent formulation of the~Kadomtsev--Petviashvili hierarchy
\jour TMF
\yr 2012
\vol 171
\issue 2
\pages 303--311
\mathnet{http://mi.mathnet.ru/tmf6905}
\crossref{https://doi.org/10.4213/tmf6905}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3168713}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...171..683T}
\elib{https://elibrary.ru/item.asp?id=20732469}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 171
\issue 2
\pages 683--690
\crossref{https://doi.org/10.1007/s11232-012-0065-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000304914200010}
\elib{https://elibrary.ru/item.asp?id=17990742}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862141648}
Linking options:
  • https://www.mathnet.ru/eng/tmf6905
  • https://doi.org/10.4213/tmf6905
  • https://www.mathnet.ru/eng/tmf/v171/i2/p303
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:393
    Full-text PDF :157
    References:57
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024