Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 171, Number 3, Pages 370–386
DOI: https://doi.org/10.4213/tmf6899
(Mi tmf6899)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Schlesinger system and isomonodromic deformations of bundles with connections on Riemann surfaces

D. V. Artamonov

M. V. Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (489 kB) Citations (1)
References:
Abstract: We introduce a way to represent pairs (E,), where E is a bundle on a Riemann surface and is a logarithmic connection in E, based on a representation of the surface as the quotient of the exterior of the unit disc. In this representation, we write the local isomonodromic deformation conditions for the pairs (E,). These conditions are written as a modified Schlesinger system on a Riemann sphere (reduced to the ordinary Schlesinger system in the typical case) supplemented by a certain system of linear equations.
Keywords: isomonodromic deformation, Riemann surface, Schlesinger system.
Received: 20.04.2011
Revised: 18.08.2011
English version:
Theoretical and Mathematical Physics, 2012, Volume 171, Issue 3, Pages 739–753
DOI: https://doi.org/10.1007/s11232-012-0071-0
Bibliographic databases:
Language: Russian
Citation: D. V. Artamonov, “The Schlesinger system and isomonodromic deformations of bundles with connections on Riemann surfaces”, TMF, 171:3 (2012), 370–386; Theoret. and Math. Phys., 171:3 (2012), 739–753
Citation in format AMSBIB
\Bibitem{Art12}
\by D.~V.~Artamonov
\paper The~Schlesinger system and isomonodromic deformations of bundles with connections on Riemann surfaces
\jour TMF
\yr 2012
\vol 171
\issue 3
\pages 370--386
\mathnet{http://mi.mathnet.ru/tmf6899}
\crossref{https://doi.org/10.4213/tmf6899}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3168720}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...171..739A}
\elib{https://elibrary.ru/item.asp?id=20732475}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 171
\issue 3
\pages 739--753
\crossref{https://doi.org/10.1007/s11232-012-0071-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000306072900002}
\elib{https://elibrary.ru/item.asp?id=20477724}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864086257}
Linking options:
  • https://www.mathnet.ru/eng/tmf6899
  • https://doi.org/10.4213/tmf6899
  • https://www.mathnet.ru/eng/tmf/v171/i3/p370
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:532
    Full-text PDF :222
    References:60
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025