Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 171, Number 3, Pages 370–386
DOI: https://doi.org/10.4213/tmf6899
(Mi tmf6899)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Schlesinger system and isomonodromic deformations of bundles with connections on Riemann surfaces

D. V. Artamonov

M. V. Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (489 kB) Citations (1)
References:
Abstract: We introduce a way to represent pairs $(E,\nabla)$, where $E$ is a bundle on a Riemann surface and $\nabla$ is a logarithmic connection in $E$, based on a representation of the surface as the quotient of the exterior of the unit disc. In this representation, we write the local isomonodromic deformation conditions for the pairs $(E,\nabla)$. These conditions are written as a modified Schlesinger system on a Riemann sphere (reduced to the ordinary Schlesinger system in the typical case) supplemented by a certain system of linear equations.
Keywords: isomonodromic deformation, Riemann surface, Schlesinger system.
Received: 20.04.2011
Revised: 18.08.2011
English version:
Theoretical and Mathematical Physics, 2012, Volume 171, Issue 3, Pages 739–753
DOI: https://doi.org/10.1007/s11232-012-0071-0
Bibliographic databases:
Language: Russian
Citation: D. V. Artamonov, “The Schlesinger system and isomonodromic deformations of bundles with connections on Riemann surfaces”, TMF, 171:3 (2012), 370–386; Theoret. and Math. Phys., 171:3 (2012), 739–753
Citation in format AMSBIB
\Bibitem{Art12}
\by D.~V.~Artamonov
\paper The~Schlesinger system and isomonodromic deformations of bundles with connections on Riemann surfaces
\jour TMF
\yr 2012
\vol 171
\issue 3
\pages 370--386
\mathnet{http://mi.mathnet.ru/tmf6899}
\crossref{https://doi.org/10.4213/tmf6899}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3168720}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...171..739A}
\elib{https://elibrary.ru/item.asp?id=20732475}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 171
\issue 3
\pages 739--753
\crossref{https://doi.org/10.1007/s11232-012-0071-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000306072900002}
\elib{https://elibrary.ru/item.asp?id=20477724}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864086257}
Linking options:
  • https://www.mathnet.ru/eng/tmf6899
  • https://doi.org/10.4213/tmf6899
  • https://www.mathnet.ru/eng/tmf/v171/i3/p370
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024