Abstract:
We show that the mathematical formalisms of general relativity and of quantum mechanics can be reconciled based on an algebraic approach. In this case, gravity does not need to be quantized.
Keywords:
general relativity theory, quantum mechanics, algebraic approach.
Citation:
D. A. Slavnov, “Possibility of reconciling quantum mechanics with general relativity theory”, TMF, 171:3 (2012), 493–510; Theoret. and Math. Phys., 171:3 (2012), 848–861
\Bibitem{Sla12}
\by D.~A.~Slavnov
\paper Possibility of reconciling quantum mechanics with general relativity theory
\jour TMF
\yr 2012
\vol 171
\issue 3
\pages 493--510
\mathnet{http://mi.mathnet.ru/tmf6895}
\crossref{https://doi.org/10.4213/tmf6895}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2914391}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...171..848S}
\elib{https://elibrary.ru/item.asp?id=20732485}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 171
\issue 3
\pages 848--861
\crossref{https://doi.org/10.1007/s11232-012-0080-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000306072900011}
\elib{https://elibrary.ru/item.asp?id=20477737}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864088305}
Linking options:
https://www.mathnet.ru/eng/tmf6895
https://doi.org/10.4213/tmf6895
https://www.mathnet.ru/eng/tmf/v171/i3/p493
This publication is cited in the following 5 articles:
Slavnov D.A., “A Model of the Atom With a Photon Bose Condensate”, Phys. Part. Nuclei, 51:3 (2020), 350–362
Armando Reyes, Julio Jaramillo, “Symmetry and reversibility properties for quantum algebras and skew Poincaré-Birkhoff-Witt extensions”, ing.cienc, 14:27 (2018), 29
A. Reyes, H. Suarez, “Bases for quantum algebras and skew Poincaré-Birkhoff-Witt extensions”, MOMENTO, 2017, no. 54, 54–75
D. A. Slavnov, “On evolution of the universe”, Phys. Part. Nuclei Lett., 13:1 (2016), 32–37
D. A. Slavnov, “Locality and time irreversibility in quantum processes”, Theoret. and Math. Phys., 179:3 (2014), 627–636