Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 171, Number 3, Pages 417–429
DOI: https://doi.org/10.4213/tmf6894
(Mi tmf6894)
 

Pauli graphs, Riemann hypothesis, and Goldbach pairs

M. Planata, F. Anselmia, P. Soléb

a FEMTO-ST Institute, CNRS, Besançon, France
b Telecom ParisTech, Paris, France
References:
Abstract: We consider the Pauli group $\mathcal{P}_q$ generated by unitary quantum generators $X$ (shift) and $Z$ (clock) acting on vectors of the $q$-dimensional Hilbert space. It has been found that the number of maximal mutually commuting sets within $\mathcal{P}_q$ is controlled by the Dedekind psi function $\psi(q)$ and that there exists a specific inequality involving the Euler constant $\gamma\sim0.577$ that is only satisfied at specific low dimensions $q\in\mathcal{A}=\{2,3,4,5,6,8,10,12,18,30\}$. The set $\mathcal{A}$ is closely related to the set $\mathcal{A}\cup\{1,24\}$ of integers that are totally Goldbach, i.e., that consist of all primes $p<n-1$ with $p$ not dividing $n$ and such that $n-p$ is prime. In the extreme high-dimensional case, at primorial numbers $N_r$, the Hardy–Littlewood function $R(q)$ is introduced for estimating the number of Goldbach pairs, and a new inequality (Theorem $4$) is established for the equivalence to the Riemann hypothesis in terms of $R(N_r)$. We discuss these number-theoretical properties in the context of the qudit commutation structure.
Keywords: Riemann hypothesis, Goldbach pair, generalized Pauli group, qudit commutation structure.
Received: 14.04.2011
English version:
Theoretical and Mathematical Physics, 2012, Volume 171, Issue 3, Pages 780–791
DOI: https://doi.org/10.1007/s11232-012-0074-x
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. Planat, F. Anselmi, P. Solé, “Pauli graphs, Riemann hypothesis, and Goldbach pairs”, TMF, 171:3 (2012), 417–429; Theoret. and Math. Phys., 171:3 (2012), 780–791
Citation in format AMSBIB
\Bibitem{PlaAnsSol12}
\by M.~Planat, F.~Anselmi, P.~Sol\'e
\paper Pauli graphs, Riemann hypothesis, and Goldbach pairs
\jour TMF
\yr 2012
\vol 171
\issue 3
\pages 417--429
\mathnet{http://mi.mathnet.ru/tmf6894}
\crossref{https://doi.org/10.4213/tmf6894}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3168723}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...171..780P}
\elib{https://elibrary.ru/item.asp?id=20732479}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 171
\issue 3
\pages 780--791
\crossref{https://doi.org/10.1007/s11232-012-0074-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000306072900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864081776}
Linking options:
  • https://www.mathnet.ru/eng/tmf6894
  • https://doi.org/10.4213/tmf6894
  • https://www.mathnet.ru/eng/tmf/v171/i3/p417
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:440
    Full-text PDF :195
    References:90
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024