Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1999, Volume 118, Number 1, Pages 67–73
DOI: https://doi.org/10.4213/tmf686
(Mi tmf686)
 

On the Wilson criterion

Yu. M. Zinoviev

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: The $U(1)$-gauge theory with the Villain action is considered in a cubic lattice approximation of three- and four-dimensional tori. As the lattice spacing tends to zero, the naturally defined correlation functions converge to the correlation functions of the $\mathbf R$-gauge electrodynamics on three- and four-dimensional tori only for a special scaling, which depends on the correlation functions. Another scaling gives degenerate continuum limits. The Wilson criterion for the confinement of charged particles is fulfilled for the $\mathbf R$-gauge electrodynamics on a torus. If the radius of the initial torus tends to infinity, then the correlation functions converge to the correlation functions of the $\mathbf R$-gauge Euclidean electrodynamics.
Received: 15.04.1998
English version:
Theoretical and Mathematical Physics, 1999, Volume 118, Issue 1, Pages 54–59
DOI: https://doi.org/10.1007/BF02557195
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. M. Zinoviev, “On the Wilson criterion”, TMF, 118:1 (1999), 67–73; Theoret. and Math. Phys., 118:1 (1999), 54–59
Citation in format AMSBIB
\Bibitem{Zin99}
\by Yu.~M.~Zinoviev
\paper On the Wilson criterion
\jour TMF
\yr 1999
\vol 118
\issue 1
\pages 67--73
\mathnet{http://mi.mathnet.ru/tmf686}
\crossref{https://doi.org/10.4213/tmf686}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1702844}
\zmath{https://zbmath.org/?q=an:0991.81086}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 118
\issue 1
\pages 54--59
\crossref{https://doi.org/10.1007/BF02557195}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079262300005}
Linking options:
  • https://www.mathnet.ru/eng/tmf686
  • https://doi.org/10.4213/tmf686
  • https://www.mathnet.ru/eng/tmf/v118/i1/p67
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024