Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 125, Number 3, Pages 491–518
DOI: https://doi.org/10.4213/tmf681
(Mi tmf681)
 

This article is cited in 6 scientific papers (total in 6 papers)

Integrability of truncated Hugoniot–Maslov chains for trajectories of mesoscale vortices on shallow water

S. Yu. Dobrokhotov

A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
Full-text PDF (464 kB) Citations (6)
References:
Abstract: The problem of trajectories of “large” (mesoscale) shallow-water vortices manifests integrability properties. The Maslov hypothesis states that such vortices can be generated using solutions with weak pointlike singularities of the type of the square root of a quadratic form; such square-root singular solutions may describe the propagation of mesoscale vortices in the atmosphere (typhoons and cyclones). Such solutions are necessarily described by infinite systems of ordinary differential equations (chains) in the Taylor coefficients of solutions in the vicinities of singularities. A proper truncation of the “vortex chain” for a shallow-water system is a system of 17 nonlinear equations. This system becomes the Hill equation when the Coriolis force is constant and almost becomes the physical pendulum equations when the Coriolis force depends on the latitude. In a rough approximation, we can then explicitly describe possible trajectories of mesoscale vortices, which are analogous to oscillations of a rotating solid body swinging on an elastic thread.
Received: 29.05.2000
Revised: 03.07.2000
English version:
Theoretical and Mathematical Physics, 2000, Volume 125, Issue 3, Pages 1724–1741
DOI: https://doi.org/10.1023/A:1026614414836
Bibliographic databases:
Language: Russian
Citation: S. Yu. Dobrokhotov, “Integrability of truncated Hugoniot–Maslov chains for trajectories of mesoscale vortices on shallow water”, TMF, 125:3 (2000), 491–518; Theoret. and Math. Phys., 125:3 (2000), 1724–1741
Citation in format AMSBIB
\Bibitem{Dob00}
\by S.~Yu.~Dobrokhotov
\paper Integrability of truncated Hugoniot--Maslov chains for trajectories of mesoscale vortices on shallow water
\jour TMF
\yr 2000
\vol 125
\issue 3
\pages 491--518
\mathnet{http://mi.mathnet.ru/tmf681}
\crossref{https://doi.org/10.4213/tmf681}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1839658}
\zmath{https://zbmath.org/?q=an:1008.76009}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 125
\issue 3
\pages 1724--1741
\crossref{https://doi.org/10.1023/A:1026614414836}
Linking options:
  • https://www.mathnet.ru/eng/tmf681
  • https://doi.org/10.4213/tmf681
  • https://www.mathnet.ru/eng/tmf/v125/i3/p491
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:656
    Full-text PDF :199
    References:91
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024