Abstract:
We consider a stationary discrete model of the Boltzmann equation for four velocities (the Broadwell model). We obtain new exact automodel solutions of the model corresponding to an incompressible and a compressible gas. We show that one class of solutions satisfies the problem of gas evaporation and condensation on the boundary of a disk and external space. The system turns out to be strongly nonequilibrium, and continuous medium equations are not applicable to it.
Citation:
O. V. Ilyin, “Stationary solutions of the kinetic Broadwell model”, TMF, 170:3 (2012), 481–488; Theoret. and Math. Phys., 170:3 (2012), 406–412
This publication is cited in the following 10 articles:
S. A. Dukhnovskii, “Uslovie sekulyarnosti kineticheskoi sistemy Broduella”, Materialy 6 Mezhdunarodnoi konferentsii «Dinamicheskie sistemy i kompyuternye nauki: teoriya i prilozheniya» (DYSC 2024). Irkutsk, 16–20 sentyabrya 2024 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 238, VINITI, M., 2025, 49–58
S. A. Dukhnovskii, “Gruppovoi analiz sistemy McKean”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach.
Pontryaginskie chteniya—XXXIV», Voronezh, 3-9 maya 2023 g. Chast 3, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 232, VINITI RAN, M., 2024, 153–157
S. A. Dukhnovskii, “Uslovie sekulyarnosti dlya sistemy McKean”, Materialy Mezhdunarodnoi konferentsii «Klassicheskaya i sovremennaya geometriya», posvyaschennoi 100-letiyu so dnya rozhdeniya professora Levona Sergeevicha Atanasyana (15 iyulya 1921 g.—5 iyulya 1998 g.).
Moskva, 1–4 noyabrya 2021 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 220, VINITI RAN, M., 2023, 44–48
S. A. Dukhnovskii, “Painlevé Test and a Self-Similar Solution of the Kinetic Model”, J Math Sci, 275:5 (2023), 613
Sergey Dukhnovsky, “A self-similar solution for the two-dimensional Broadwell system via the Bateman equation”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2022, no. 3, 30–40
S. A. Dukhnovskii, “Approksimatsionnoe reshenie sistemy McKean”, Materialy Voronezhskoi vesennei
matematicheskoi shkoly
«Sovremennye metody teorii kraevykh
zadach. Pontryaginskie chteniya–XXX».
Voronezh, 3–9 maya 2019 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 191, VINITI RAN, M., 2021, 157–161
S. A. Dukhnovskii, “Test Penleve i avtomodelnoe reshenie kineticheskoi modeli”, Materialy XVII Vserossiiskoi molodezhnoi shkoly-konferentsii «Lobachevskie chteniya-2018»,
23-28 noyabrya 2018 g., Kazan. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 176, VINITI RAN, M., 2020, 91–94
S. A. Dukhnovskii, “Resheniya sistemy Karlemana cherez razlozhenie Penleve”, Vladikavk. matem. zhurn., 22:4 (2020), 58–67
Sergey Dukhnovsky, “On solutions of the kinetic McKean system”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 3, 3–11
O. V. Ilyin, “Symmetries, the current function, and exact solutions for Broadwell's two-dimensional stationary kinetic model”, Theoret. and Math. Phys., 179:3 (2014), 679–688