Abstract:
We completely describe the Siegel discs and attractors for the pp-adic dynamical system f(x)=x2n+1+axn+1f(x)=x2n+1+axn+1 on the space of complex pp-adic numbers.
Citation:
F. M. Mukhamedov, U. A. Rozikov, “A polynomial pp-adic dynamical system”, TMF, 170:3 (2012), 448–456; Theoret. and Math. Phys., 170:3 (2012), 376–383
This publication is cited in the following 8 articles:
Toka Diagana, Bertin Diarra, “Analysis of the Dynamics of the Sigmoid Beverton-Holt Model with Overlapping Generations in the Projective Line P1(Qp)”, P-Adic Num Ultrametr Anal Appl, 17:1 (2025), 62
Toka Diagana, “The long-term behavior of the p-adic Sigmoid Beverton-Holt dynamical systems in the projective line P1(Qp)”, Journal of Mathematical Analysis and Applications, 530:1 (2024), 127638
I. A. Sattarov, E. T. Aliev, “Ergodicity and Periodic Orbits of p-Adic (1,2)-Rational Dynamical Systems with Two Fixed Points”, P-Adic Num Ultrametr Anal Appl, 15:1 (2023), 48
Rozikov U.A. Sattarov I.A., “Dynamical Systems of the P-Adic (2,2)-Rational Functions With Two Fixed Points”, Results Math., 75:3 (2020), 100
Luna A.R., Rozikov U.A., Sattarov I.A., “P-Adic Dynamical Systems of (3, 1)-Rational Functions With Unique Fixed Point”, P-Adic Numbers Ultrametric Anal. Appl., 12:3 (2020), 210–230
U. A. Rozikov, I. A. Sattarov, “p-Adic dynamical systems of (2,2)-rational functions with unique fixed point”, Chaos Solitons Fractals, 105 (2017), 260–270
F. Mukhamedov, “Renormalization method in p-adic lambda-model on the Cayley tree”, Int. J. Theor. Phys., 54:10 (2015), 3577–3595
Vedenyapin V.V., Fimin N.N., “The Liouville equation, the hydrodynamic substitution, and the Hamilton–Jacobi equation”, Dokl. Math., 86:2 (2012), 697–699