Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 170, Number 3, Pages 393–408
DOI: https://doi.org/10.4213/tmf6774
(Mi tmf6774)
 

This article is cited in 7 scientific papers (total in 7 papers)

Existence and analyticity of bound states of a two-particle Schrödinger operator on a lattice

S. N. Lakaev, S. S. Ulashov

Samarkand State University, Samarkand, Uzbekistan
Full-text PDF (460 kB) Citations (7)
References:
Abstract: We consider the two-particle discrete Schrödinger operator Hμ(K) corresponding to a system of two arbitrary particles on a d-dimensional lattice Zd, d3, interacting via a pair contact repulsive potential with a coupling constant μ>0 (KTd is the quasimomentum of two particles). We find that the upper (right) edge of the essential spectrum can be either a virtual level (for d=3,4) or an eigenvalue (for d5) of Hμ(K). We show that there exists a unique eigenvalue located to the right of the essential spectrum, depending on the coupling constant μ and the two-particle quasimomentum K. We prove the analyticity of the corresponding eigenstate and the analyticity of the eigenvalue and the eigenstate as functions of the quasimomentum KTd in the domain of their existence.
Keywords: discrete Schrödinger operator, two-particle system, Hamiltonian, contact repulsive potential, virtual level, eigenvalue, lattice.
Received: 01.03.2011
English version:
Theoretical and Mathematical Physics, 2012, Volume 170, Issue 3, Pages 326–340
DOI: https://doi.org/10.1007/s11232-012-0033-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. N. Lakaev, S. S. Ulashov, “Existence and analyticity of bound states of a two-particle Schrödinger operator on a lattice”, TMF, 170:3 (2012), 393–408; Theoret. and Math. Phys., 170:3 (2012), 326–340
Citation in format AMSBIB
\Bibitem{LakUla12}
\by S.~N.~Lakaev, S.~S.~Ulashov
\paper Existence and analyticity of bound states of a~two-particle Schr\"odinger operator on a~lattice
\jour TMF
\yr 2012
\vol 170
\issue 3
\pages 393--408
\mathnet{http://mi.mathnet.ru/tmf6774}
\crossref{https://doi.org/10.4213/tmf6774}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3168848}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...170..326L}
\elib{https://elibrary.ru/item.asp?id=20732432}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 170
\issue 3
\pages 326--340
\crossref{https://doi.org/10.1007/s11232-012-0033-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303456600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860381632}
Linking options:
  • https://www.mathnet.ru/eng/tmf6774
  • https://doi.org/10.4213/tmf6774
  • https://www.mathnet.ru/eng/tmf/v170/i3/p393
  • This publication is cited in the following 7 articles:
    1. D.I. Borisov, D.A. Zezyulin, “On Perturbation of Thresholds in Essential Spectrum under Coexistence of Virtual Level and Spectral Singularity”, Russ. J. Math. Phys., 31:1 (2024), 60  crossref
    2. D. I Borisov, D. A Zezyulin, “O bifurkatsii porogov sushchestvennogo spektra v prisutstvii spektral'noy singulyarnosti”, Differencialʹnye uravneniâ, 59:2 (2023), 270  crossref
    3. D. I. Borisov, D. A. Zezyulin, “On the Bifurcation of Thresholds of the Essential Spectrum with a Spectral Singularity”, Diff Equat, 59:2 (2023), 278  crossref
    4. S. N. Lakaev, A. T. Boltaev, “The Essential Spectrum of a Three Particle Schrödinger Operator on Lattices”, Lobachevskii J Math, 44:3 (2023), 1176  crossref
    5. S. N. Lakaev, Sh. S. Lakaev, “The existence of bound states in a system of three particles in an optical lattice”, J. Phys. A-Math. Theor., 50:33 (2017), 335202  crossref  mathscinet  zmath  isi  scopus
    6. S. N. Lakaev, G. Dell'Antonio, A. M. Khalkhuzhaev, “Existence of an isolated band in a system of three particles in an optical lattice”, J. Phys. A-Math. Theor., 49:14 (2016), 145204  crossref  mathscinet  zmath  adsnasa  isi  scopus
    7. S. N. Lakaev, Sh. U. Alladustov, “Positivity of eigenvalues of the two-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 178:3 (2014), 336–346  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:468
    Full-text PDF :213
    References:54
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025