Abstract:
We consider the two-particle discrete Schrödinger operator Hμ(K) corresponding to a system of two arbitrary particles on a d-dimensional lattice Zd, d⩾3, interacting via a pair contact repulsive potential with a coupling constant μ>0 (K∈Td is the quasimomentum of two particles). We find that the upper (right) edge of the essential spectrum can be either a virtual level (for d=3,4) or an eigenvalue (for d⩾5) of Hμ(K). We show that there exists a unique eigenvalue located to the right of the essential spectrum, depending on the coupling constant μ and the two-particle quasimomentum K. We prove the analyticity of the corresponding eigenstate and the analyticity of the eigenvalue and the eigenstate as functions of the quasimomentum K∈Td in the domain of their existence.
Citation:
S. N. Lakaev, S. S. Ulashov, “Existence and analyticity of bound states of a two-particle Schrödinger operator on a lattice”, TMF, 170:3 (2012), 393–408; Theoret. and Math. Phys., 170:3 (2012), 326–340
\Bibitem{LakUla12}
\by S.~N.~Lakaev, S.~S.~Ulashov
\paper Existence and analyticity of bound states of a~two-particle Schr\"odinger operator on a~lattice
\jour TMF
\yr 2012
\vol 170
\issue 3
\pages 393--408
\mathnet{http://mi.mathnet.ru/tmf6774}
\crossref{https://doi.org/10.4213/tmf6774}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3168848}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...170..326L}
\elib{https://elibrary.ru/item.asp?id=20732432}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 170
\issue 3
\pages 326--340
\crossref{https://doi.org/10.1007/s11232-012-0033-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303456600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860381632}
Linking options:
https://www.mathnet.ru/eng/tmf6774
https://doi.org/10.4213/tmf6774
https://www.mathnet.ru/eng/tmf/v170/i3/p393
This publication is cited in the following 7 articles:
D.I. Borisov, D.A. Zezyulin, “On Perturbation of Thresholds in Essential Spectrum under Coexistence of Virtual Level and Spectral Singularity”, Russ. J. Math. Phys., 31:1 (2024), 60
D. I Borisov, D. A Zezyulin, “O bifurkatsii porogov sushchestvennogo spektra v prisutstvii spektral'noy singulyarnosti”, Differencialʹnye uravneniâ, 59:2 (2023), 270
D. I. Borisov, D. A. Zezyulin, “On the Bifurcation of Thresholds of the Essential Spectrum with a Spectral Singularity”, Diff Equat, 59:2 (2023), 278
S. N. Lakaev, A. T. Boltaev, “The Essential Spectrum of a Three Particle Schrödinger Operator on Lattices”, Lobachevskii J Math, 44:3 (2023), 1176
S. N. Lakaev, Sh. S. Lakaev, “The existence of bound states in a system of three particles in an optical lattice”, J. Phys. A-Math. Theor., 50:33 (2017), 335202
S. N. Lakaev, G. Dell'Antonio, A. M. Khalkhuzhaev, “Existence of an isolated band in a system of three particles in an optical lattice”, J. Phys. A-Math. Theor., 49:14 (2016), 145204
S. N. Lakaev, Sh. U. Alladustov, “Positivity of eigenvalues of the two-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 178:3 (2014), 336–346