Abstract:
We obtain a sufficiently general variational formula for a Green's function, which, in particular, implies the classic variational formulas of Hadamard and Schiffer.
Citation:
S. P. Suetin, “An analogue of the Hadamard and Schiffer variational formulas”, TMF, 170:3 (2012), 335–341; Theoret. and Math. Phys., 170:3 (2012), 274–279
This publication is cited in the following 5 articles:
V. N. Dubinin, “Variational formulae for conformal capacity”, Sb. Math., 215:1 (2024), 90–100
V. N. Dubinin, “Green energy of discrete signed measure on concentric circles”, Izv. Math., 87:2 (2023), 265–283
E. A. Rakhmanov, S. P. Suetin, “The distribution of the zeros of the Hermite-Padé polynomials for a pair of functions forming a Nikishin system”, Sb. Math., 204:9 (2013), 1347–1390
A. I. Aptekarev, D. N. Tulyakov, “Asymptotics of Meixner polynomials and Christoffel-Darboux kernels”, Trans. Moscow Math. Soc., 73 (2012), 67–106
V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Method of interior variations and existence of S-compact sets”, Proc. Steklov Inst. Math., 279 (2012), 25–51