Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 170, Number 2, Pages 174–187
DOI: https://doi.org/10.4213/tmf6757
(Mi tmf6757)
 

This article is cited in 41 scientific papers (total in 41 papers)

New perturbation theory representation of the conformal symmetry breaking effects in gauge quantum field theory models

A. L. Kataeva, S. V. Mikhailovb

a Institute for Nuclear Research, RAS, Moscow, Russia
b Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russia
References:
Abstract: We propose a hypothesis on the detailed structure for the representation of the conformal symmetry breaking term in the basic Crewther relation generalized in the perturbation theory framework in QCD renormalized in the ¯MS¯¯¯¯¯¯¯¯MS scheme. We establish the validity of this representation in the ¯MS¯¯¯¯¯¯¯¯MS approximation. Using the variant of the generalized Crewther relation formulated here allows finding relations between specific contributions to the QCD perturbation series coefficients for the flavor nonsinglet part of the Adler function DnsADnsA for the electron–positron annihilation in hadrons and to the perturbation series coefficients for the Bjorken sum rule SBjpSBjp for the polarized deep-inelastic lepton–nucleon scattering. We find new relations between the α4sα4s coefficients of DnsADnsA. Satisfaction of one of them serves as an additional theoretical verification of the recent computer analytic calculations of the terms of order α4sα4s in the expressions for these two quantities.
Keywords: quantum field theory, conformal symmetry breaking, perturbation theory, renormalization group, relation between characteristics of inclusive processes.
Received: 12.02.2012
English version:
Theoretical and Mathematical Physics, 2012, Volume 170, Issue 2, Pages 139–150
DOI: https://doi.org/10.1007/s11232-012-0016-7
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. L. Kataev, S. V. Mikhailov, “New perturbation theory representation of the conformal symmetry breaking effects in gauge quantum field theory models”, TMF, 170:2 (2012), 174–187; Theoret. and Math. Phys., 170:2 (2012), 139–150
Citation in format AMSBIB
\Bibitem{KatMik12}
\by A.~L.~Kataev, S.~V.~Mikhailov
\paper New perturbation theory representation of the~conformal symmetry breaking effects in gauge quantum field theory models
\jour TMF
\yr 2012
\vol 170
\issue 2
\pages 174--187
\mathnet{http://mi.mathnet.ru/tmf6757}
\crossref{https://doi.org/10.4213/tmf6757}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3168831}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...170..139K}
\elib{https://elibrary.ru/item.asp?id=20732412}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 170
\issue 2
\pages 139--150
\crossref{https://doi.org/10.1007/s11232-012-0016-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000301478500002}
\elib{https://elibrary.ru/item.asp?id=17979430}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857958674}
Linking options:
  • https://www.mathnet.ru/eng/tmf6757
  • https://doi.org/10.4213/tmf6757
  • https://www.mathnet.ru/eng/tmf/v170/i2/p174
  • This publication is cited in the following 41 articles:
    1. S. V. Mikhailov, “Adler function, Bjorken polarized sum rule: confirmation of elements of the {β}-expansion and the diagrams”, J. High Energ. Phys., 2024:10 (2024)  crossref
    2. A. L. Kataev, V. S. Molokoedov, “A generalized Crewther relation and the V scheme: analytic results in fourth-order perturbative QCD and QED”, Theoret. and Math. Phys., 217:1 (2023), 1459–1486  mathnet  crossref  crossref  mathscinet  adsnasa
    3. A. L. Kataev, V. S. Molokoedov, “Decomposed photon anomalous dimension in QCD and the {β} -expanded representations for the Adler function”, Phys. Rev. D, 108:9 (2023)  crossref
    4. A. L. Kataev, V. S. Molokoedov, “Representation of the RG-Invariant Quantities in Perturbative QCD through Powers of the Conformal Anomaly”, Phys. Part. Nuclei, 54:5 (2023), 931  crossref
    5. I. O. Goriachuk, A. L. Kataev, V. S. Molokoedov, “The $ \overline{\mathrm{MS}} $-scheme $ {\alpha}_s^5 $ QCD contributions to the Adler function and Bjorken polarized sum rule in the Crewther-type two-fold {β}-expanded representation”, J. High Energ. Phys., 2022:5 (2022)  crossref
    6. P. A. Baikov, S. V. Mikhailov, “The {β}-expansion for Adler function, Bjorken Sum Rule, and the Crewther-Broadhurst-Kataev relation at order O($ {\alpha}_s^4 $)”, J. High Energ. Phys., 2022:9 (2022)  crossref
    7. K.G. Chetyrkin, “Adler function, Bjorken Sum Rule and Crewther-Broadhurst-Kataev relation with generic fermion representations at order O(αs4)”, Nuclear Physics B, 985 (2022), 115988  crossref
    8. Akrami M., Mirjalili A., “Comparing Optimized Renormalization Schemes For Qcd Observables”, Phys. Rev. D, 101:3 (2020), 034007  crossref  mathscinet  isi  scopus
    9. Aleshin S.S. Kataev A.L. Stepanyantz K.V., “The Three-Loop Adler D-Function For N=1 Sqcd Regularized By Dimensional Reduction”, J. High Energy Phys., 2019, no. 3, 196  crossref  mathscinet  isi  scopus
    10. Kim V.T., “Qcd Asymptotics At Collider Energies”, Phys. Part. Nuclei Lett., 16:5 (2019), 414–420  crossref  isi
    11. Wu X.-G., Shen J.-M., Du B.-L., Huang X.-D., Wang Sh.-Q., Brodsky S.J., “The Qcd Renormalization Group Equation and the Elimination of Fixed-Order Scheme-and-Scale Ambiguities Using the Principle of Maximum Conformality”, Prog. Part. Nucl. Phys., 108 (2019), UNSP 103706  crossref  isi
    12. Gregory Gabadadze, Giorgi Tukhashvili, “Holographic CBK relation”, Physics Letters B, 782 (2018), 202  crossref
    13. A. V. Garkusha, A. L. Kataev, V. S. Molokoedov, “Renormalization scheme and gauge (in)dependence of the generalized Crewther relation: what are the real grounds of the β-factorization property?”, J. High Energ. Phys., 2018:2 (2018)  crossref
    14. J.-M. Shen, X.-G. Wu, Ya. Ma, S. J. Brodsky, “The generalized scheme-independent Crewther relation in QCD”, Phys. Lett. B, 770 (2017), 494–499  crossref  mathscinet  isi  scopus
    15. P. Banerjee, P. K. Dhani, M. Mahakhud, V. Ravindran, S. Seth, “Finite remainders of the Konishi at two loops in $\mathcal{N}=4$ SYM”, J. High Energy Phys., 2017, no. 5, 085  crossref  mathscinet  isi  scopus
    16. S. V. Mikhailov, “On a realization of $\{\beta\}$-expansion in QCD”, J. High Energy Phys., 2017, no. 4, 169  crossref  mathscinet  isi  scopus
    17. M. R. Khellat, A. Mirjalili, “Deviation pattern approach for optimizing perturbative terms of QCD renormalization group invariant observables”, XXIII International Baldin Seminar on High Energy Physics Problems Relativistic Nuclear Physics and Quantum Chromodynamics (Baldin ISHEPP XXIII), EPJ Web Conf., 138, eds. S. Bondarenko, V. Burov, A. Malakhov, EDP Sciences, 2017, UNSP 02004  crossref  isi  scopus
    18. A. G. Grozin, J. M. Henn, G. P. Korchemsky, P. Marquard, “The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions”, J. High Energy Phys., 2016, no. 1, 140  crossref  mathscinet  zmath  isi  scopus
    19. A. L. Kataev, S. V. Mikhailov, “The $\{\beta\}$-expansion formalism in perturbative QCD and its extension”, J. High Energy Phys., 2016, no. 11, 079  crossref  mathscinet  isi  elib  scopus
    20. A. Deur, S. J. Brodsky, G. F. de Teramond, “The QCD running coupling”, Prog. Part. Nucl. Phys., 90 (2016), 1–74  crossref  mathscinet  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:635
    Full-text PDF :198
    References:104
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025