Loading [MathJax]/jax/output/CommonHTML/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 169, Number 3, Pages 413–430
DOI: https://doi.org/10.4213/tmf6738
(Mi tmf6738)
 

This article is cited in 25 scientific papers (total in 25 papers)

Quantumness of quantum ensembles

Shunlong Luo, Nan Li, Shuangshuang Fu

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, People's Republic of China
References:
Abstract: Quantum ensembles, as generalizations of quantum states, are a universal instrument for describing the physical or informational status in measurement theory and communication theory because of the ubiquitous presence of incomplete information and the necessity of encoding classical messages in quantum states. The interrelations between the constituent states of a quantum ensemble can display more or less quantum characteristics when the involved quantum states do not commute because no single classical basis diagonalizes all these states. This contrasts sharply with the situation of a single quantum state, which is always diagonalizable. To quantify these quantum characteristics and, in particular, to more clearly understand the possibilities of secure data transmission in quantum cryptography, based on certain prototypical quantum ensembles, we introduce some figures of merit quantifying the quantumness of a quantum ensemble, review some existing quantities that are interpretable as measures of quantumness, and investigate their fundamental properties such as subadditivity and concavity. Comparing these measures, we find that different measures can yield different quantumness orderings for quantum ensembles. This reveals the elusive and complex nature of quantum ensembles and shows that no unique measure can describe all the fundamental and subtle properties of quantumness.
Keywords: quantum ensemble, quantumness, quantum correlation, cloning, Holevo quantity, commutator, quantum measurement.
Received: 16.12.2010
English version:
Theoretical and Mathematical Physics, 2011, Volume 169, Issue 3, Pages 1724–1739
DOI: https://doi.org/10.1007/s11232-011-0147-2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Shunlong Luo, Nan Li, Shuangshuang Fu, “Quantumness of quantum ensembles”, TMF, 169:3 (2011), 413–430; Theoret. and Math. Phys., 169:3 (2011), 1724–1739
Citation in format AMSBIB
\Bibitem{LuoLiFu11}
\by Shunlong~Luo, Nan~Li, Shuangshuang~Fu
\paper Quantumness of quantum ensembles
\jour TMF
\yr 2011
\vol 169
\issue 3
\pages 413--430
\mathnet{http://mi.mathnet.ru/tmf6738}
\crossref{https://doi.org/10.4213/tmf6738}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3171200}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 169
\issue 3
\pages 1724--1739
\crossref{https://doi.org/10.1007/s11232-011-0147-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300146300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855540131}
Linking options:
  • https://www.mathnet.ru/eng/tmf6738
  • https://doi.org/10.4213/tmf6738
  • https://www.mathnet.ru/eng/tmf/v169/i3/p413
  • This publication is cited in the following 25 articles:
    1. Yajing Fan, Meng Zhang, “Quantifying the quantumness of pure-state ensembles via coherence of Gram matrix”, Physics Letters A, 508 (2024), 129506  crossref
    2. Muthuganesan R. Chandrasekar V.K., “Quantifying the Quantumness of An Ensemble of Quantum States”, Int. J. Theor. Phys., 61:2 (2022), 32  crossref  mathscinet  isi
    3. Wendao Yuan, Zhaoqi Wu, Shao-Ming Fei, “Characterizing the quantumness of mixed-state ensembles via the coherence of Gram matrix with generalized α-z-relative Rényi entropy”, Laser Phys. Lett., 19:12 (2022), 125203  crossref
    4. Maged Faihan Alotaibi, Eied Mahmoud Khalil, Mahmoud Youssef Abd-Rabbou, Marin Marin, “The Classicality and Quantumness of the Driven Qubit–Photon–Magnon System”, Mathematics, 10:23 (2022), 4458  crossref
    5. Hongting Song, Nan Li, “Quantumness and Dequantumness Power of Quantum Channels”, Entropy, 24:8 (2022), 1146  crossref
    6. Fabio Anza, James P. Crutchfield, “Quantum Information Dimension and Geometric Entropy”, PRX Quantum, 3:2 (2022)  crossref
    7. Wendao Yuan, Zhaoqi Wu, Shao-Ming Fei, “Quantumness of Pure-State Ensembles via Coherence of Gram Matrix Based on Generalized α-z-Relative Rényi Entropy”, Int J Theor Phys, 61:6 (2022)  crossref
    8. Huang H., Wu Zh., Zhu Ch., Fei Sh.-M., “Quantifying the Quantumness of Ensembles Via Generalized Alpha-Z-Relative Renyi Entropy”, Int. J. Theor. Phys., 60:7 (2021), 2368–2379  crossref  mathscinet  isi
    9. Sun Yu., Luo Sh., “Post-Measurement Quantumness”, Phys. Scr., 96:12 (2021), 125025  crossref  isi
    10. Fu Sh. Luo Sh., “Quantifying Decoherence Via Increases in Classicality”, Entropy, 23:12 (2021), 1594  crossref  mathscinet  isi
    11. Sun Yu., Luo Sh., Lei X., “Quantumness of Ensemble Via Coherence of Gram Matrix”, EPL, 134:3 (2021), 30003  crossref  mathscinet  isi
    12. Sun Yu., Luo Sh., Lei X., “Gram Matrices of Mixed-State Ensembles”, Int. J. Theor. Phys., 60:9 (2021), 3211–3224  crossref  mathscinet  isi
    13. Zhang Yu. Luo Sh., “Quantum States as Observables: Their Variance and Nonclassicality”, Phys. Rev. A, 102:6 (2020), 062211  crossref  mathscinet  isi
    14. Duan Zh., Hou J., “Contractive Freedoms of Ensembles and Quantum Channels For Infinite-Dimensional Systems”, Quantum Inf. Process., 18:8 (2019), 254  crossref  mathscinet  isi
    15. Li N., Luo Sh., Song H., “Monotonicity of Quantumness of Ensembles Under Commutativity-Preserving Channels”, Phys. Rev. A, 99:5 (2019), 052114  crossref  isi
    16. Dai H., Luo Sh., “Information-Theoretic Approach to Atomic Spin Nonclassicality”, Phys. Rev. A, 100:6 (2019), 062114  crossref  isi
    17. Mao Yu., Song H., “Quantumness of Ensembles Via Coherence”, Phys. Lett. A, 383:23 (2019), 2698–2703  crossref  mathscinet  isi
    18. Li N., Luo Sh., Mao Yu., “Quantumness-Generating Capability of Quantum Dynamics”, Quantum Inf. Process., 17:4 (2018), UNSP 74  crossref  mathscinet  isi  scopus
    19. Brodutch A., Groisman B., Kenigsberg D., Mor T., ““Quantumness” Versus “Classicality” of Quantum States and Quantum Protocols”, Int. J. Quantum Inf., 16:2 (2018), 1850014  crossref  mathscinet  isi  scopus
    20. Qi X.-F., Gao T., Yan F.-L., “Quantifying the Quantumness of Ensembles Via Unitary Similarity Invariant Norms”, Front. Phys., 13:4 (2018), 130309  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:595
    Full-text PDF :235
    References:76
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025