Abstract:
We present an attempt to construct a QCD Hamiltonian on the light front (LF), including a semiphenomenological description of vacuum effects. In this approach, we obtain the LF theory via a limit transition from the theory formulated on spacelike planes near the LF. For the zero Fourier modes of fields in the coordinate along the light cone to remain independent dynamical variables on the LF, we realize the limit transition differently for zero and nonzero modes. The zero modes then model the vacuum on the LF and allow introducing a semiphenomenological description of vacuum effects. For a gauge-invariant regularization, we introduce a lattice in the space of “transverse” coordinates and a gauge-invariant cutoff of the momentum component along the light cone. We introduce a new description of field variables on the lattice, using unitary matrices related to the lattice links for the gluon zero modes and Hermitian matrices related to the corresponding lattice sites for the nonzero modes.
Citation:
M. Yu. Malyshev, E. V. Prokhvatilov, “Construction of the light-front QCD Hamiltonian with zero modes modeling the vacuum”, TMF, 169:2 (2011), 272–284; Theoret. and Math. Phys., 169:2 (2011), 1600–1610
\Bibitem{MalPro11}
\by M.~Yu.~Malyshev, E.~V.~Prokhvatilov
\paper Construction of the~light-front QCD Hamiltonian with zero modes modeling the~vacuum
\jour TMF
\yr 2011
\vol 169
\issue 2
\pages 272--284
\mathnet{http://mi.mathnet.ru/tmf6728}
\crossref{https://doi.org/10.4213/tmf6728}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3171190}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...169.1600M}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 169
\issue 2
\pages 1600--1610
\crossref{https://doi.org/10.1007/s11232-011-0137-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297912700009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055191264}
Linking options:
https://www.mathnet.ru/eng/tmf6728
https://doi.org/10.4213/tmf6728
https://www.mathnet.ru/eng/tmf/v169/i2/p272
This publication is cited in the following 10 articles:
E. V. Prokhvatilov, I. A. Lebedev, M. Yu. Malyshev, “Search for Hadron Models in Light-Front Quantum Field Theory”, Phys. Part. Nuclei, 54:3 (2023), 384
Malyshev M.Yu., Prokhvatilov E.V., Franke V.A., “Effective Hamiltonian For Qcd on the Light Front”, Phys. Part. Nuclei Lett., 16:5 (2019), 533–536
Franke V.A. Malyshev M.Yu. Paston S.A. Prokhyatilov V E. Vyazoysky I M., “Light Front Hamiltonian For Boson Form of Qed (1+1) in Pauli-Villars Regularization”, Int. J. Mod. Phys. A, 34:21 (2019), 1950113
R. A. Zubov, E. V. Prokhvatilov, M. Yu. Malyshev, “Model of quark–antiquark interaction in quantum chromodynamics on the light front”, Theoret. and Math. Phys., 190:3 (2017), 378–390
Malyshev M.Yu. Paston S.A. Prokhvatilov E.V. Zubov R.A. Franke V.A., “Pauli-Villars regularization in nonperturbative Hamiltonian approach on the light front”, XIth Conference on Quark Confinement and Hadron Spectrum (Saint Petersburg, Russia, 8–12 September 2014), AIP Conference Proceedings, 1701, ed. Andrianov A. Brambilla N. Kim V. Kolevatov S., Amer Inst Physics, 2016, 100012
Zubov R., Prokhvatilov E., “On quark-antiquark approximation in light front QCD with zero gluon modes”, XIth Conference on Quark Confinement and Hadron Spectrum (Saint Petersburg, Russia, 8–12 September 2014), AIP Conference Proceedings, 1701, eds. Andrianov A., Brambilla N., Kim V., Kolevatov S., Amer Inst Physics, 2016, 040023
R. A. Zubov, E. V. Prokhvatilov, M. Yu. Malyshev, “Limit transition to the light-front QCD and a quark–antiquark
approximation”, Theoret. and Math. Phys., 184:3 (2015), 1287–1294
R. A. Zubov, S. A. Paston, E. V. Prokhvatilov, “Exact solution of the 't Hooft equation in the limit of heavy quarks with unequal masses”, Theoret. and Math. Phys., 184:3 (2015), 1281–1286
R. A. Zubov, E. V. Prokhvatilov, M. Yu. Malyshev, “Limit transition to the light-front QCD and a quark–antiquark approximation”, Theor Math Phys, 184:3 (2015), 1287