Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 125, Number 2, Pages 297–314
DOI: https://doi.org/10.4213/tmf670
(Mi tmf670)
 

This article is cited in 20 scientific papers (total in 20 papers)

Averaging the operators for a large number of clusters: Phase transitions

V. P. Maslov

M. V. Lomonosov Moscow State University, Faculty of Physics
References:
Abstract: We develop the theory of averaging the operators in a Fock space, introduced in our previous papers. We find the algebra of mean operators. We introduce the quantum entropy and quantum free energy using the function $f(z)=z\ln(z)$ of the mean unit operator (the “measure” of mean operators). Such a “quantum thermodynamics” determines the temperature dependence of the critical speed (“the Landau criterion”) and the temperature distribution at which the speed of a superfluid system is nonzero even at zero temperature. We generalize the consideration to the case where sparsely distributed bosons form clusters.
Received: 20.07.2000
English version:
Theoretical and Mathematical Physics, 2000, Volume 125, Issue 2, Pages 1552–1567
DOI: https://doi.org/10.1007/BF02551014
Bibliographic databases:
Language: Russian
Citation: V. P. Maslov, “Averaging the operators for a large number of clusters: Phase transitions”, TMF, 125:2 (2000), 297–314; Theoret. and Math. Phys., 125:2 (2000), 1552–1567
Citation in format AMSBIB
\Bibitem{Mas00}
\by V.~P.~Maslov
\paper Averaging the operators for a large number of clusters: Phase transitions
\jour TMF
\yr 2000
\vol 125
\issue 2
\pages 297--314
\mathnet{http://mi.mathnet.ru/tmf670}
\crossref{https://doi.org/10.4213/tmf670}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1837689}
\zmath{https://zbmath.org/?q=an:1026.82005}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 125
\issue 2
\pages 1552--1567
\crossref{https://doi.org/10.1007/BF02551014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166090500008}
Linking options:
  • https://www.mathnet.ru/eng/tmf670
  • https://doi.org/10.4213/tmf670
  • https://www.mathnet.ru/eng/tmf/v125/i2/p297
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:572
    Full-text PDF :218
    References:83
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024