Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 168, Number 3, Pages 389–416
DOI: https://doi.org/10.4213/tmf6689
(Mi tmf6689)
 

This article is cited in 31 scientific papers (total in 31 papers)

Frustrated quantum two-dimensional J1-J2-J3 antiferromagnet in a spherically symmetric self-consistent approach

A. F. Barabanova, A. V. Mikheenkovba, A. V. Shvartsbergba

a Institute for High Pressure Physics, RAS, Troitsk, Moscow Oblast, Russia
b Moscow Institute for Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
References:
Abstract: In the framework of a spherically symmetric self-consistent approach to two-time retarded spin–spin Green's functions, we develop the theory of a two-dimensional frustrated J1-J2-J3 quantum S=1/2 antiferromagnet. We show that taking the damping of spin fluctuations into account is decisive in forming both the spin-liquid state and the state with long-range order. In particular, the existence of damping allows explaining the scaling behavior of the susceptibility χ(q,ω) of the CuO2 cuprate plane, the behavior of the spin spectrum in the two-plane case, and the occurrence of an incommensurable χ(q,ω) peak. In the case of the complete J1-J2-J3 model, in a single analytic approach, we find continuous transitions between three phases with long-range order (“checkerboard”, stripe, and helical (q,q) phases) through the spin-liquid state. We obtain good agreement with cluster computations for the J1-J2-J3 model and agreement with the neutron scattering data for the J1-J2 model of cuprates.
Keywords: high-temperature superconductivity, low-dimensional antiferromagnetism, spin liquid, quantum phase transition.
Received: 28.02.2011
Revised: 07.03.2011
English version:
Theoretical and Mathematical Physics, 2011, Volume 168, Issue 3, Pages 1192–1215
DOI: https://doi.org/10.1007/s11232-011-0098-7
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. F. Barabanov, A. V. Mikheenkov, A. V. Shvartsberg, “Frustrated quantum two-dimensional J1-J2-J3 antiferromagnet in a spherically symmetric self-consistent approach”, TMF, 168:3 (2011), 389–416; Theoret. and Math. Phys., 168:3 (2011), 1192–1215
Citation in format AMSBIB
\Bibitem{BarMikShv11}
\by A.~F.~Barabanov, A.~V.~Mikheenkov, A.~V.~Shvartsberg
\paper Frustrated quantum two-dimensional $J_1$-$J_2$-$J_3$ antiferromagnet in a~spherically symmetric self-consistent approach
\jour TMF
\yr 2011
\vol 168
\issue 3
\pages 389--416
\mathnet{http://mi.mathnet.ru/tmf6689}
\crossref{https://doi.org/10.4213/tmf6689}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3166295}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...168.1192B}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 168
\issue 3
\pages 1192--1215
\crossref{https://doi.org/10.1007/s11232-011-0098-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000295694100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053593582}
Linking options:
  • https://www.mathnet.ru/eng/tmf6689
  • https://doi.org/10.4213/tmf6689
  • https://www.mathnet.ru/eng/tmf/v168/i3/p389
  • This publication is cited in the following 31 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:606
    Full-text PDF :230
    References:68
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025