Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 168, Number 3, Pages 389–416
DOI: https://doi.org/10.4213/tmf6689
(Mi tmf6689)
 

This article is cited in 30 scientific papers (total in 30 papers)

Frustrated quantum two-dimensional $J_1$-$J_2$-$J_3$ antiferromagnet in a spherically symmetric self-consistent approach

A. F. Barabanova, A. V. Mikheenkovba, A. V. Shvartsbergba

a Institute for High Pressure Physics, RAS, Troitsk, Moscow Oblast, Russia
b Moscow Institute for Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
References:
Abstract: In the framework of a spherically symmetric self-consistent approach to two-time retarded spin–spin Green's functions, we develop the theory of a two-dimensional frustrated $J_1$-$J_2$-$J_3$ quantum $S=1/2$ antiferromagnet. We show that taking the damping of spin fluctuations into account is decisive in forming both the spin-liquid state and the state with long-range order. In particular, the existence of damping allows explaining the scaling behavior of the susceptibility $\chi(\mathbf{q},\omega)$ of the CuO$_2$ cuprate plane, the behavior of the spin spectrum in the two-plane case, and the occurrence of an incommensurable $\chi(\mathbf{q},\omega)$ peak. In the case of the complete $J_1$-$J_2$-$J_3$ model, in a single analytic approach, we find continuous transitions between three phases with long-range order (“checkerboard”, stripe, and helical $(q,q)$ phases) through the spin-liquid state. We obtain good agreement with cluster computations for the $J_1$-$J_2$-$J_3$ model and agreement with the neutron scattering data for the $J_1$-$J_2$ model of cuprates.
Keywords: high-temperature superconductivity, low-dimensional antiferromagnetism, spin liquid, quantum phase transition.
Received: 28.02.2011
Revised: 07.03.2011
English version:
Theoretical and Mathematical Physics, 2011, Volume 168, Issue 3, Pages 1192–1215
DOI: https://doi.org/10.1007/s11232-011-0098-7
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. F. Barabanov, A. V. Mikheenkov, A. V. Shvartsberg, “Frustrated quantum two-dimensional $J_1$-$J_2$-$J_3$ antiferromagnet in a spherically symmetric self-consistent approach”, TMF, 168:3 (2011), 389–416; Theoret. and Math. Phys., 168:3 (2011), 1192–1215
Citation in format AMSBIB
\Bibitem{BarMikShv11}
\by A.~F.~Barabanov, A.~V.~Mikheenkov, A.~V.~Shvartsberg
\paper Frustrated quantum two-dimensional $J_1$-$J_2$-$J_3$ antiferromagnet in a~spherically symmetric self-consistent approach
\jour TMF
\yr 2011
\vol 168
\issue 3
\pages 389--416
\mathnet{http://mi.mathnet.ru/tmf6689}
\crossref{https://doi.org/10.4213/tmf6689}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3166295}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...168.1192B}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 168
\issue 3
\pages 1192--1215
\crossref{https://doi.org/10.1007/s11232-011-0098-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000295694100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053593582}
Linking options:
  • https://www.mathnet.ru/eng/tmf6689
  • https://doi.org/10.4213/tmf6689
  • https://www.mathnet.ru/eng/tmf/v168/i3/p389
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:568
    Full-text PDF :217
    References:59
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024