Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 168, Number 1, Pages 162–170
DOI: https://doi.org/10.4213/tmf6671
(Mi tmf6671)
 

This article is cited in 15 scientific papers (total in 15 papers)

Quantization of classical mechanics: Shall we Lie?

M. C. Nucci

Dipartimento di Matematica e Informatica, Università di Perugia, INFN Sezione Perugia, Perugia, Italy
References:
Abstract: We propose a Lie–Noether-symmetry solution of two problems that arise with classical quantization: the quantization of higher-order (more than second) Euler–Lagrange ordinary differential equations of classical mechanics and the quantization of any second-order Euler–Lagrange ordinary differential equation that classically comes from a simple linear equation via nonlinear canonical transformations.
Keywords: quantization, Ostrogradsky method, Schrödinger equation, Lie symmetry, Noether symmetry.
English version:
Theoretical and Mathematical Physics, 2011, Volume 168, Issue 1, Pages 994–1001
DOI: https://doi.org/10.1007/s11232-011-0081-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. C. Nucci, “Quantization of classical mechanics: Shall we Lie?”, TMF, 168:1 (2011), 162–170; Theoret. and Math. Phys., 168:1 (2011), 994–1001
Citation in format AMSBIB
\Bibitem{Nuc11}
\by M.~C.~Nucci
\paper Quantization of classical mechanics: Shall we Lie?
\jour TMF
\yr 2011
\vol 168
\issue 1
\pages 162--170
\mathnet{http://mi.mathnet.ru/tmf6671}
\crossref{https://doi.org/10.4213/tmf6671}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2603988}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 168
\issue 1
\pages 994--1001
\crossref{https://doi.org/10.1007/s11232-011-0081-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293631800013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79961144141}
Linking options:
  • https://www.mathnet.ru/eng/tmf6671
  • https://doi.org/10.4213/tmf6671
  • https://www.mathnet.ru/eng/tmf/v168/i1/p162
  • This publication is cited in the following 15 articles:
    1. Maria Clara Nucci, “In search of hidden symmetries”, J. Phys.: Conf. Ser., 2877:1 (2024), 012103  crossref
    2. Gabriel González Contreras, Alexander Yakhno, “Symmetries of Systems with the Same Jacobi Multiplier”, Symmetry, 15:7 (2023), 1416  crossref
    3. Sinelshchikov D.I., Gaiur I.Yu., Kudryashov N.A., “Lax Representation and Quadratic First Integrals For a Family of Non-Autonomous Second-Order Differential Equations”, J. Math. Anal. Appl., 480:1 (2019), UNSP 123375  crossref  mathscinet  isi
    4. Andronikos Paliathanasis, Michael Tsamparlis, “Lie symmetries for systems of evolution equations”, Journal of Geometry and Physics, 124 (2018), 165  crossref
    5. Nucci M.C., “The Nonlinear Pendulum Always Oscillates”, J. Nonlinear Math. Phys., 24:1, SI (2017), 146–156  crossref  mathscinet  isi  scopus
    6. Gubbiotti G. Nucci M.C., “Quantization of the Dynamics of a Particle on a Double Cone By Preserving Noether Symmetries”, J. Nonlinear Math. Phys., 24:3 (2017), 356–367  crossref  mathscinet  isi  scopus
    7. M. C. Nucci, “Ubiquitous symmetries”, Theoret. and Math. Phys., 188:3 (2016), 1361–1370  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. Nucci M.C. Sanchini G., “Noether Symmetries Quantization and Superintegrability of Biological Models”, Symmetry-Basel, 8:12 (2016), 155  crossref  mathscinet  isi  scopus
    9. Gubbiotti G., Nucci M.C., “Quantization of Quadratic Lienard-Type Equations By Preserving Noether Symmetries”, J. Math. Anal. Appl., 422:2 (2015), 1235–1246  crossref  mathscinet  zmath  isi  scopus
    10. M. C. Nucci, “What symmetries can do for you”, Int. J. Mod. Phys. Conf. Ser., 38 (2015), 1560076  crossref
    11. Gubbiotti G., Nucci M.C., “Noether Symmetries and the Quantization of a Lienard-Type Nonlinear Oscillator”, J. Nonlinear Math. Phys., 21:2 (2014), 248–264  crossref  mathscinet  isi  scopus
    12. M C Nucci, “Spectral realization of the Riemann zeros by quantizingH=w(x)(p+ℓ2p/p): the Lie-Noether symmetry approach”, J. Phys.: Conf. Ser., 482 (2014), 012032  crossref
    13. Nucci M.C., “Quantizing Preserving Noether Symmetries”, J. Nonlinear Math. Phys., 20:3 (2013), 451–463  crossref  mathscinet  isi  scopus
    14. Nucci M.C., “Symmetries for Thought”, Miskolc Math. Notes, 14:2 (2013), 461–474  crossref  mathscinet  zmath  isi
    15. Nucci M.C., “From Lagrangian to quantum mechanics with symmetries”, Symmetries in Science XV, J. Phys.: Conf. Ser., 380, 2012, 012008  crossref  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:550
    Full-text PDF :292
    References:54
    First page:25
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025