Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 168, Number 1, Pages 138–150
DOI: https://doi.org/10.4213/tmf6669
(Mi tmf6669)
 

This article is cited in 3 scientific papers (total in 3 papers)

Multimode systems of nonlinear equations: Derivation, integrability, and numerical solutions

M. Kuszner, S. B. Leble, B. Reichel

Gdansk University of Technology, Gdansk, Polland
Full-text PDF (440 kB) Citations (3)
References:
Abstract: We consider the propagation of electromagnetic pulses in isotropic media taking a third-order nonlinearity into account. We develop a method for transforming Maxwell's equations based on a complete set of projection operators corresponding to wave-dispersion branches (in a waveguide or in matter) with the propagation direction taken into account. The most important result of applying the method is a system of equations describing the one-dimensional dynamics of pulses propagating in opposite directions without accounting for dispersion. We derive the corresponding self-action equations. We thus introduce dispersion in the media and show how the operators change. We obtain generalized Schäfer–Wayne short-pulse equations accounting for both propagation directions. In the three-dimensional problem, we focus on optic fibers with dispersive matter, deriving and numerically solving equations of the waveguide-mode interaction. We discuss the effects of the interaction of unidirectional pulses. For the coupled nonlinear Schrödinger equations, we discuss a concept of numerical integrability and apply the developed calculation schemes.
Keywords: projection-operator method, multimode waveguide, coupled nonlinear Schrödinger equations, short-pulse equation.
English version:
Theoretical and Mathematical Physics, 2011, Volume 168, Issue 1, Pages 974–984
DOI: https://doi.org/10.1007/s11232-011-0079-x
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. Kuszner, S. B. Leble, B. Reichel, “Multimode systems of nonlinear equations: Derivation, integrability, and numerical solutions”, TMF, 168:1 (2011), 138–150; Theoret. and Math. Phys., 168:1 (2011), 974–984
Citation in format AMSBIB
\Bibitem{KusLebRei11}
\by M.~Kuszner, S.~B.~Leble, B.~Reichel
\paper Multimode systems of nonlinear equations: Derivation, integrability,
and numerical solutions
\jour TMF
\yr 2011
\vol 168
\issue 1
\pages 138--150
\mathnet{http://mi.mathnet.ru/tmf6669}
\crossref{https://doi.org/10.4213/tmf6669}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3166276}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...168..974K}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 168
\issue 1
\pages 974--984
\crossref{https://doi.org/10.1007/s11232-011-0079-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293631800011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79961150120}
Linking options:
  • https://www.mathnet.ru/eng/tmf6669
  • https://doi.org/10.4213/tmf6669
  • https://www.mathnet.ru/eng/tmf/v168/i1/p138
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:439
    Full-text PDF :232
    References:46
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024