|
This article is cited in 4 scientific papers (total in 4 papers)
Invariant description of $\mathbb{CP}^{N-1}$ sigma models
P. P. Goldsteina, A. M. Grundlandbc a Theoretical Physics Department, The Andrzej Soltan Institute for Nuclear Studies, Warsaw, Poland
b Centre de Recherches Mathématiques, Université de Montréal, Montréal, Canada
c Université du Québec à Trois-Rivières, Canada
Abstract:
We propose an invariant formulation of completely integrable $\mathbb P^{N-1}$ Euclidean sigma models in two dimensions defined on the Riemann sphere $S^2$. We explicitly take the scaling invariance into account by expressing all the equations in terms of projection operators, discussing properties of the operators projecting onto one-dimensional subspaces in detail. We consider surfaces connected with the $\mathbb P^{N-1}$ models and determine invariant recurrence relations, linking the successive projection operators, and also immersion functions of the surfaces.
Keywords:
sigma model, soliton surface in a Lie algebra, projector formalism, invariant recurrence relation.
Citation:
P. P. Goldstein, A. M. Grundland, “Invariant description of $\mathbb{CP}^{N-1}$ sigma models”, TMF, 168:1 (2011), 98–111; Theoret. and Math. Phys., 168:1 (2011), 939–950
Linking options:
https://www.mathnet.ru/eng/tmf6666https://doi.org/10.4213/tmf6666 https://www.mathnet.ru/eng/tmf/v168/i1/p98
|
Statistics & downloads: |
Abstract page: | 343 | Full-text PDF : | 176 | References: | 38 | First page: | 3 |
|