Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 168, Number 1, Pages 13–23
DOI: https://doi.org/10.4213/tmf6660
(Mi tmf6660)
 

This article is cited in 8 scientific papers (total in 8 papers)

Properties of the solitonic potentials of the heat operator

M. Boitia, F. Pempinellia, A. K. Pogrebkovb

a Dipartimento di Fisica, Università del Salento and Sezione INFN, Lecce, Italy
b Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
Full-text PDF (446 kB) Citations (8)
References:
Abstract: We study properties of the purely solitonic ττ-function and potential of the heat equation in detail. We describe the asymptotic behavior of the potential and establish the ray structure of this asymptotic behavior on the plane (x1,x2)(x1,x2) in dependence on the parameters of the potential.
Keywords: Kadomtsev–Petviashvili equation, soliton, asymptotic potential.
English version:
Theoretical and Mathematical Physics, 2011, Volume 168, Issue 1, Pages 865–874
DOI: https://doi.org/10.1007/s11232-011-0070-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. Boiti, F. Pempinelli, A. K. Pogrebkov, “Properties of the solitonic potentials of the heat operator”, TMF, 168:1 (2011), 13–23; Theoret. and Math. Phys., 168:1 (2011), 865–874
Citation in format AMSBIB
\Bibitem{BoiPemPog11}
\by M.~Boiti, F.~Pempinelli, A.~K.~Pogrebkov
\paper Properties of the~solitonic potentials of the~heat operator
\jour TMF
\yr 2011
\vol 168
\issue 1
\pages 13--23
\mathnet{http://mi.mathnet.ru/tmf6660}
\crossref{https://doi.org/10.4213/tmf6660}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3166267}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 168
\issue 1
\pages 865--874
\crossref{https://doi.org/10.1007/s11232-011-0070-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293631800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79961159526}
Linking options:
  • https://www.mathnet.ru/eng/tmf6660
  • https://doi.org/10.4213/tmf6660
  • https://www.mathnet.ru/eng/tmf/v168/i1/p13
  • This publication is cited in the following 8 articles:
    1. Wu D., “The Direct Scattering Problem For Perturbed Kadomtsev-Petviashvili Multi Line Solitons”, J. Math. Phys., 62:9 (2021), 091513  crossref  mathscinet  isi
    2. Abenda S., Grinevich P.G., “Rational Degenerations of -Curves, Totally Positive Grassmannians and KP2-Solitons”, Commun. Math. Phys., 361:3 (2018), 1029–1081  crossref  mathscinet  zmath  isi  scopus
    3. Boiti M. Pempinelli F. Pogrebkov A.K., “Kpii: Cauchy-Jost Function, Darboux Transformations and Totally Nonnegative Matrices”, J. Phys. A-Math. Theor., 50:30 (2017), 304001  crossref  mathscinet  zmath  isi  scopus
    4. Shai Horowitz, Yair Zarmi, “Kadomtsev–Petviashvili II equation: Structure of asymptotic soliton webs”, Physica D: Nonlinear Phenomena, 300 (2015), 1  crossref
    5. Zarmi Ya., “Vertex Dynamics in Multi-Soliton Solutions of Kadomtsev-Petviashvili II Equation”, Nonlinearity, 27:6 (2014), 1499–1523  crossref  mathscinet  zmath  adsnasa  isi  scopus
    6. Zarmi Ya., “Nonlinear Quantum-Dynamical System Based on the Kadomtsev-Petviashvili II Equation”, J. Math. Phys., 54:6 (2013), 063515  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    7. M. Boiti, F. Pempinelli, A. K. Pogrebkov, “Extended resolvent of the heat operator with a multisoliton potential”, Theoret. and Math. Phys., 172:2 (2012), 1037–1051  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    8. Boiti M., Pempinelli F., Pogrebkov A.K., “Heat operator with pure soliton potential: Properties of Jost and dual Jost solutions”, J Math Phys, 52:8 (2011), 083506  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:678
    Full-text PDF :206
    References:124
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025