Abstract:
We study properties of the purely solitonic ττ-function and potential of the heat equation in detail. We describe the asymptotic behavior of the potential and establish the ray structure of this asymptotic behavior on the plane (x1,x2)(x1,x2) in dependence on the parameters of the potential.
Citation:
M. Boiti, F. Pempinelli, A. K. Pogrebkov, “Properties of the solitonic potentials of the heat operator”, TMF, 168:1 (2011), 13–23; Theoret. and Math. Phys., 168:1 (2011), 865–874
This publication is cited in the following 8 articles:
Wu D., “The Direct Scattering Problem For Perturbed Kadomtsev-Petviashvili Multi Line Solitons”, J. Math. Phys., 62:9 (2021), 091513
Abenda S., Grinevich P.G., “Rational Degenerations of -Curves, Totally Positive Grassmannians and KP2-Solitons”, Commun. Math. Phys., 361:3 (2018), 1029–1081
Boiti M. Pempinelli F. Pogrebkov A.K., “Kpii: Cauchy-Jost Function, Darboux Transformations and Totally Nonnegative Matrices”, J. Phys. A-Math. Theor., 50:30 (2017), 304001
Shai Horowitz, Yair Zarmi, “Kadomtsev–Petviashvili II equation: Structure of asymptotic soliton webs”, Physica D: Nonlinear Phenomena, 300 (2015), 1
Zarmi Ya., “Vertex Dynamics in Multi-Soliton Solutions of Kadomtsev-Petviashvili II Equation”, Nonlinearity, 27:6 (2014), 1499–1523
Zarmi Ya., “Nonlinear Quantum-Dynamical System Based on the Kadomtsev-Petviashvili II Equation”, J. Math. Phys., 54:6 (2013), 063515
M. Boiti, F. Pempinelli, A. K. Pogrebkov, “Extended resolvent of the heat operator with a multisoliton potential”, Theoret. and Math. Phys., 172:2 (2012), 1037–1051
Boiti M., Pempinelli F., Pogrebkov A.K., “Heat operator with pure soliton potential: Properties of Jost and dual Jost solutions”, J Math Phys, 52:8 (2011), 083506