Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 167, Number 3, Pages 484–495
DOI: https://doi.org/10.4213/tmf6656
(Mi tmf6656)
 

This article is cited in 6 scientific papers (total in 6 papers)

Noncommutative mechanics and exotic Galilean symmetry

L. Martinaab

a INFN, Sezione di Lecce, Lecce, Italy
b Dipartimento di Fisica, Università del Salento, Lecce, Italy
Full-text PDF (424 kB) Citations (6)
References:
Abstract: In terms of the Lagrange–Souriau 2-form formalism, we describe a wide set of Hamiltonian dynamical systems with first-order Lagrangians. We consider a wide class of systems derived in different phenomenological contexts. The noncommutativity of the particle position coordinates are a natural consequence. We present various explicit examples.
Keywords: dynamical system, Lagrange–Souriau formalism, Hamiltonian structure.
Received: 23.06.2011
English version:
Theoretical and Mathematical Physics, 2011, Volume 167, Issue 3, Pages 816–825
DOI: https://doi.org/10.1007/s11232-011-0065-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. Martina, “Noncommutative mechanics and exotic Galilean symmetry”, TMF, 167:3 (2011), 484–495; Theoret. and Math. Phys., 167:3 (2011), 816–825
Citation in format AMSBIB
\Bibitem{Mar11}
\by L.~Martina
\paper Noncommutative mechanics and exotic Galilean symmetry
\jour TMF
\yr 2011
\vol 167
\issue 3
\pages 484--495
\mathnet{http://mi.mathnet.ru/tmf6656}
\crossref{https://doi.org/10.4213/tmf6656}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3165753}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...167..816M}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 167
\issue 3
\pages 816--825
\crossref{https://doi.org/10.1007/s11232-011-0065-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293653700013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79960112053}
Linking options:
  • https://www.mathnet.ru/eng/tmf6656
  • https://doi.org/10.4213/tmf6656
  • https://www.mathnet.ru/eng/tmf/v167/i3/p484
  • This publication is cited in the following 6 articles:
    1. José F. Cariñena, Héctor Figueroa, Partha Guha, STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, Algebra without Borders – Classical and Constructive Nonassociative Algebraic Structures, 2023, 533  crossref
    2. A. I. Maimistov, “Manifestation of the Gyrotropy of Topological Media in Nonlinear Optical Processes”, Bull. Russ. Acad. Sci. Phys., 85:12 (2021), 1429  crossref
    3. Deriglazov A.A., “Variational Problem For Hamiltonian System on So(K, M) Lie-Poisson Manifold and Dynamics of Semiclassical Spin”, Mod. Phys. Lett. A, 29:10 (2014), 1450048  crossref  mathscinet  zmath  adsnasa  isi  scopus
    4. Othman A.A., De Montigny M., Khanna F.C., “Galilean Covariant Dirac Equation with a Woods Saxon Potential”, Int. J. Mod. Phys. E-Nucl. Phys., 22:12 (2013), 1350092  crossref  adsnasa  isi  scopus
    5. L. Martina, “Dynamics of a noncommutative monopole”, Theoret. and Math. Phys., 172:2 (2012), 1127–1135  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    6. Martina L., “Dynamics in non-commutative spaces and generalizations”, Int. J. Geom. Methods Mod. Phys., 9:2 (2012), 1260012, 7 pp.  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:467
    Full-text PDF :213
    References:68
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025