|
This article is cited in 3 scientific papers (total in 3 papers)
Birkhoff strata of the Grassmannian $\mathrm{Gr}^{(2)}$: Algebraic curves
B. G. Konopelchenkoab, G. Ortenzic a INFN, Sezione di Lecce, Lecce, Italy
b Dipartimento di Fisica, Università del Salento, Sezione di Lecce, Lecce, Italy
c Dipartimento di Matematica Pura
ed Applicazioni, Università di Milano Bicocca, Milano,
Italy
Abstract:
We study algebraic varieties and curves arising in the Birkhoff strata of the Sato Grassmannian Gr$^{(2)}$. We show that the big cell $\Sigma_0$ contains the tower of families of the normal rational curves of all odd orders. The strata $\Sigma_{2n}$, $n=1,2,3,\dots$, contain hyperelliptic curves of genus $n$ and their coordinate rings. The strata $\Sigma_{2n+1}$, $n=0,1,2,3,\dots$, contain $(2m+1,2m+3)$ plane curves for $n=2m,2m-1$ $(m\geq2)$ and also $(3,4)$ and $(3,5)$ curves in $\Sigma_3$ and $\Sigma_5$. Curves in the strata $\Sigma_{2n+1}$ have zero genus.
Keywords:
Sato Grassmannian, Birkhoff stratum, algebraic manifold, hyperelliptic curve.
Received: 23.06.2011
Citation:
B. G. Konopelchenko, G. Ortenzi, “Birkhoff strata of the Grassmannian $\mathrm{Gr}^{(2)}$: Algebraic curves”, TMF, 167:3 (2011), 448–464; Theoret. and Math. Phys., 167:3 (2011), 785–799
Linking options:
https://www.mathnet.ru/eng/tmf6653https://doi.org/10.4213/tmf6653 https://www.mathnet.ru/eng/tmf/v167/i3/p448
|
Statistics & downloads: |
Abstract page: | 384 | Full-text PDF : | 180 | References: | 71 | First page: | 4 |
|