Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 167, Number 2, Pages 264–272
DOI: https://doi.org/10.4213/tmf6638
(Mi tmf6638)
 

This article is cited in 4 scientific papers (total in 4 papers)

Wigner functions for the Landau problem in noncommutative quantum mechanics

S. Dulata, Kang Lib, Jianhua Wangc

a School of Physics Science and Technology, Xinjiang University, Urumqi, China
b Department of Physics, Hangzhou Normal University, Hangzhou, China
c Department of Physics, Shaanxi University of Technology, Hanzhong, China
Full-text PDF (367 kB) Citations (4)
References:
Abstract: We study the Wigner function in noncommutative quantum mechanics. By solving the time-independent Schrödinger equation on both a noncommutative space and a noncommutative phase space, we obtain the Wigner function for the Landau problem on those spaces.
Keywords: Wigner function, noncommutative quantum mechanics, Landau problem.
Received: 26.08.2010
Revised: 27.10.2010
English version:
Theoretical and Mathematical Physics, 2011, Volume 167, Issue 2, Pages 628–635
DOI: https://doi.org/10.1007/s11232-011-0047-5
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. Dulat, Kang Li, Jianhua Wang, “Wigner functions for the Landau problem in noncommutative quantum mechanics”, TMF, 167:2 (2011), 264–272; Theoret. and Math. Phys., 167:2 (2011), 628–635
Citation in format AMSBIB
\Bibitem{DulLiWan11}
\by S.~Dulat, Kang~Li, Jianhua~Wang
\paper Wigner functions for the~Landau problem in noncommutative quantum mechanics
\jour TMF
\yr 2011
\vol 167
\issue 2
\pages 264--272
\mathnet{http://mi.mathnet.ru/tmf6638}
\crossref{https://doi.org/10.4213/tmf6638}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3166369}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...167..628D}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 167
\issue 2
\pages 628--635
\crossref{https://doi.org/10.1007/s11232-011-0047-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000291480900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958184779}
Linking options:
  • https://www.mathnet.ru/eng/tmf6638
  • https://doi.org/10.4213/tmf6638
  • https://www.mathnet.ru/eng/tmf/v167/i2/p264
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024