Abstract:
We propose a method for calculating vacuum means of the scalar field energy–momentum tensor on Lie groups and homogeneous spaces. We use the generalized harmonic analysis based on the method of coadjoint representation orbits.
Citation:
A. I. Breev, I. V. Shirokov, A. A. Magazev, “Vacuum polarization of a scalar field on Lie groups and homogeneous spaces”, TMF, 167:1 (2011), 78–95; Theoret. and Math. Phys., 167:1 (2011), 468–483
\Bibitem{BreShiMag11}
\by A.~I.~Breev, I.~V.~Shirokov, A.~A.~Magazev
\paper Vacuum polarization of a~scalar field on Lie groups and homogeneous spaces
\jour TMF
\yr 2011
\vol 167
\issue 1
\pages 78--95
\mathnet{http://mi.mathnet.ru/tmf6626}
\crossref{https://doi.org/10.4213/tmf6626}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3172130}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...167..468B}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 167
\issue 1
\pages 468--483
\crossref{https://doi.org/10.1007/s11232-011-0035-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000291480500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79956108873}
Linking options:
https://www.mathnet.ru/eng/tmf6626
https://doi.org/10.4213/tmf6626
https://www.mathnet.ru/eng/tmf/v167/i1/p78
This publication is cited in the following 9 articles:
V. V. Obukhov, “Maxwell Equations in Homogeneous Spaces with Solvable Groups of Motions”, Symmetry, 14:12 (2022), 2595
Ivanov D.A. Breev A.I., “Noncommutative Integration of the Klein-Gordon Equation in Electromagnetic Fields Admitting Functional Arbitrariness”, Russ. Phys. J., 62:12 (2020), 2169–2179
Breev A. Shapovalov A., “Non-Commutative Integration of the Dirac Equation in Homogeneous Spaces”, Symmetry-Basel, 12:11 (2020), 1867
Breev I A. Shapovalov V A., “Vacuum Quantum Effects on Lie Groups With Bi-Invariant Metrics”, Int. J. Geom. Methods Mod. Phys., 16:8 (2019), 1950122
A. I. Breev, “Scalar field vacuum polarization on homogeneous spaces with an invariant metric”, Theoret. and Math. Phys., 178:1 (2014), 59–75
Breev A.I. Shapovalov A.V., “Yang-Mills Gauge Fields Conserving the Symmetry Algebra of the Dirac Equation in a Homogeneous Space”, XXII International Conference on Integrable Systems and Quantum Symmetries, Journal of Physics Conference Series, 563, ed. Burdik C. Navratil O. Posta S., IOP Publishing Ltd, 2014, 012004
Magazev A.A., “Algebra of Symmetry Operators and Integration of the Klein-Gordon Equation in An External Electromagnetic Field”, Russ. Phys. J., 57:6 (2014), 809–818
Breev A.I., Goncharovskii M.M., Shirokov I.V., “Klein-Gordon Equation with a Special Type of Nonlocal Nonlinearity in Commutative Homogeneous Spaces with Invariant Metric”, Russ. Phys. J., 56:7 (2013), 731–739
A. A. Magazev, “Integrating Klein–Gordon–Fock equations in an external electromagnetic field on Lie groups”, Theoret. and Math. Phys., 173:3 (2012), 1654–1667