Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 167, Number 1, Pages 78–95
DOI: https://doi.org/10.4213/tmf6626
(Mi tmf6626)
 

This article is cited in 9 scientific papers (total in 9 papers)

Vacuum polarization of a scalar field on Lie groups and homogeneous spaces

A. I. Breeva, I. V. Shirokovb, A. A. Magazevc

a Tomsk State University, Tomsk, Russia
b Omsk State Technical University, Omsk, Russia
c Irtysh Branch of Novosibirsk State Academy of Water Transport
Full-text PDF (480 kB) Citations (9)
References:
Abstract: We propose a method for calculating vacuum means of the scalar field energy–momentum tensor on Lie groups and homogeneous spaces. We use the generalized harmonic analysis based on the method of coadjoint representation orbits.
Keywords: vacuum polarization, energy–momentum tensor, harmonic analysis.
Received: 19.06.2010
Revised: 10.11.2010
English version:
Theoretical and Mathematical Physics, 2011, Volume 167, Issue 1, Pages 468–483
DOI: https://doi.org/10.1007/s11232-011-0035-9
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. I. Breev, I. V. Shirokov, A. A. Magazev, “Vacuum polarization of a scalar field on Lie groups and homogeneous spaces”, TMF, 167:1 (2011), 78–95; Theoret. and Math. Phys., 167:1 (2011), 468–483
Citation in format AMSBIB
\Bibitem{BreShiMag11}
\by A.~I.~Breev, I.~V.~Shirokov, A.~A.~Magazev
\paper Vacuum polarization of a~scalar field on Lie groups and homogeneous spaces
\jour TMF
\yr 2011
\vol 167
\issue 1
\pages 78--95
\mathnet{http://mi.mathnet.ru/tmf6626}
\crossref{https://doi.org/10.4213/tmf6626}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3172130}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...167..468B}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 167
\issue 1
\pages 468--483
\crossref{https://doi.org/10.1007/s11232-011-0035-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000291480500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79956108873}
Linking options:
  • https://www.mathnet.ru/eng/tmf6626
  • https://doi.org/10.4213/tmf6626
  • https://www.mathnet.ru/eng/tmf/v167/i1/p78
  • This publication is cited in the following 9 articles:
    1. V. V. Obukhov, “Maxwell Equations in Homogeneous Spaces with Solvable Groups of Motions”, Symmetry, 14:12 (2022), 2595  crossref
    2. Ivanov D.A. Breev A.I., “Noncommutative Integration of the Klein-Gordon Equation in Electromagnetic Fields Admitting Functional Arbitrariness”, Russ. Phys. J., 62:12 (2020), 2169–2179  crossref  isi
    3. Breev A. Shapovalov A., “Non-Commutative Integration of the Dirac Equation in Homogeneous Spaces”, Symmetry-Basel, 12:11 (2020), 1867  crossref  isi
    4. Breev I A. Shapovalov V A., “Vacuum Quantum Effects on Lie Groups With Bi-Invariant Metrics”, Int. J. Geom. Methods Mod. Phys., 16:8 (2019), 1950122  crossref  mathscinet  isi
    5. A. I. Breev, “Scalar field vacuum polarization on homogeneous spaces with an invariant metric”, Theoret. and Math. Phys., 178:1 (2014), 59–75  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    6. Breev A.I. Shapovalov A.V., “Yang-Mills Gauge Fields Conserving the Symmetry Algebra of the Dirac Equation in a Homogeneous Space”, XXII International Conference on Integrable Systems and Quantum Symmetries, Journal of Physics Conference Series, 563, ed. Burdik C. Navratil O. Posta S., IOP Publishing Ltd, 2014, 012004  crossref  mathscinet  isi  scopus
    7. Magazev A.A., “Algebra of Symmetry Operators and Integration of the Klein-Gordon Equation in An External Electromagnetic Field”, Russ. Phys. J., 57:6 (2014), 809–818  crossref  zmath  isi  scopus
    8. Breev A.I., Goncharovskii M.M., Shirokov I.V., “Klein-Gordon Equation with a Special Type of Nonlocal Nonlinearity in Commutative Homogeneous Spaces with Invariant Metric”, Russ. Phys. J., 56:7 (2013), 731–739  crossref  mathscinet  isi  scopus
    9. A. A. Magazev, “Integrating Klein–Gordon–Fock equations in an external electromagnetic field on Lie groups”, Theoret. and Math. Phys., 173:3 (2012), 1654–1667  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:731
    Full-text PDF :241
    References:86
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025