Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 166, Number 3, Pages 452–464
DOI: https://doi.org/10.4213/tmf6622
(Mi tmf6622)
 

This article is cited in 9 scientific papers (total in 9 papers)

Exact solutions of nonlocal nonlinear field equations in cosmology

S. Yu. Vernov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (454 kB) Citations (9)
References:
Abstract: We consider a method for seeking exact solutions of the equation of a nonlocal scalar field in a nonflat metric. In the Friedmann–Robertson–Walker metric, the proposed method can be used in the case of an arbitrary potential except linear and quadratic potentials, and it allows obtaining solutions in quadratures depending on two arbitrary parameters. We find exact solutions for an arbitrary cubic potential, which consideration is motivated by string field theory, and also for exponential, logarithmic, and power potentials. We show that the k-essence field can be added to the model to obtain exact solutions satisfying all the Einstein equations.
Keywords: cosmology, nonlocal scalar field, Friedmann–Robertson–Walker metric, exact solution, elliptic function.
Received: 18.05.2010
Revised: 04.10.2010
English version:
Theoretical and Mathematical Physics, 2011, Volume 166, Issue 3, Pages 392–402
DOI: https://doi.org/10.1007/s11232-011-0031-0
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. Yu. Vernov, “Exact solutions of nonlocal nonlinear field equations in cosmology”, TMF, 166:3 (2011), 452–464; Theoret. and Math. Phys., 166:3 (2011), 392–402
Citation in format AMSBIB
\Bibitem{Ver11}
\by S.~Yu.~Vernov
\paper Exact solutions of nonlocal nonlinear field equations in cosmology
\jour TMF
\yr 2011
\vol 166
\issue 3
\pages 452--464
\mathnet{http://mi.mathnet.ru/tmf6622}
\crossref{https://doi.org/10.4213/tmf6622}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1615597}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...166..392V}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 166
\issue 3
\pages 392--402
\crossref{https://doi.org/10.1007/s11232-011-0031-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293733500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955125683}
Linking options:
  • https://www.mathnet.ru/eng/tmf6622
  • https://doi.org/10.4213/tmf6622
  • https://www.mathnet.ru/eng/tmf/v166/i3/p452
  • This publication is cited in the following 9 articles:
    1. Salas A.H., Jairo E C.H., Alharthi M.R., “On the Approximate Solutions of the Constant Forced (Un)Damping Helmholtz Equation For Arbitrary Initial Conditions”, Math. Probl. Eng., 2021 (2021), 8887566  crossref  mathscinet  isi
    2. Yu. G. Ignat'ev, I. A. Kokh, “Complete cosmological model based on an asymmetric scalar Higgs doublet”, Theoret. and Math. Phys., 207:1 (2021), 514–552  mathnet  crossref  crossref  adsnasa  isi
    3. Yu. G. Ignat'ev, D. Yu. Ignatyev, “Cosmological models based on a statistical system of scalar charged degenerate fermions and an asymmetric Higgs scalar doublet”, Theoret. and Math. Phys., 209:1 (2021), 1437–1472  mathnet  crossref  crossref  adsnasa  isi  elib
    4. Ignat'ev Yu.G. Ignat'ev D.Yu., “A Complete Model of Cosmological Evolution of a Scalar Field With Higgs Potential and Euclidean Cycles”, Gravit. Cosmol., 26:1 (2020), 29–37  crossref  mathscinet  isi  scopus
    5. Ignat'ev Yu.G., Kokh I.A., “Peculiarities of Cosmological Models Based on a Nonlinear Asymmetric Scalar Doublet With Minimal Interaction. i. Qualitative Analysis”, Gravit. Cosmol., 25:1 (2019), 24–36  crossref  mathscinet  isi  scopus
    6. El-Nabulsi, Rami Ahmad, “Nonlinear integro-differential Einstein's field equations from nonstandard Lagrangians”, Canadian Journal of Physics, 92:10 (2014), 1149–1153  crossref  scopus
    7. Koshelev A.S. Vernov S.Yu., “Cosmological perturbations in SFT inspired non-local scalar field models”, Eur. Phys. J. C, 72:10 (2012), 2198  crossref  adsnasa  isi  scopus
    8. Aref'eva I.Ya., Volovich I.V., “Cosmological daemon”, Journal of High Energy Physics, 2011, no. 8, 102  crossref  zmath  isi  scopus
    9. Vernov S.Yu., “Solutions of nonlocal cosmological equations”, XXIX Workshop on Geometric Methods in Physics, AIP Conf. Proc., 1307, eds. Kielanowski P., Buchstaber V., Odzijewicz A., Schlichenmaier M., Voronov T., Amer. Inst. Physics, Melville, NY, 2010, 185–190  crossref  mathscinet  zmath  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:814
    Full-text PDF :252
    References:96
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025