Abstract:
We consider the entropy gain for infinite-dimensional evolutions and show that unlike in the finite-dimensional case, there are many channels with positive minimal entropy gain. We obtain a new lower bound and compute the minimal entropy gain for a broad class of bosonic Gaussian channels. We mathematically formulate the Choi–Jamiolkowski (CJ) correspondence between channels and states in the infinite-dimensional case in a form close to the form used in quantum information theory. In particular, we obtain an explicit expression for the CJ operator defining a general nondegenerate bosonic Gaussian channel and compute its norm.
Citation:
A. S. Holevo, “Entropy gain and the Choi–Jamiolkowski correspondence for infinite-dimensional quantum evolutions”, TMF, 166:1 (2011), 142–159; Theoret. and Math. Phys., 166:1 (2011), 123–138
This publication is cited in the following 36 articles:
Katharina Heidler, Dominique Unruh, Proceedings of the 14th ACM SIGPLAN International Conference on Certified Programs and Proofs, 2025, 243
Kyung Hoon Han, Seung-Hyeok Kye, Erling Størmer, “Infinite dimensional analogues of Choi matrices”, Journal of Functional Analysis, 287:8 (2024), 110557
Hemant K. Mishra, Ludovico Lami, Prabha Mandayam, Mark M. Wilde, “Pretty good measurement for bosonic Gaussian ensembles”, Int. J. Quantum Inform., 22:05 (2024)
Xin Wang, Mark M. Wilde, “Exact entanglement cost of quantum states and channels under positive-partial-transpose-preserving operations”, Phys. Rev. A, 107:1 (2023)
Seung-Hyeok Kye, “Compositions and tensor products of linear maps between matrix algebras”, Linear Algebra and its Applications, 658 (2023), 283
Curtis L. Rau, Akira Kyle, Alex Kwiatkowski, Ezad Shojaee, John D. Teufel, Konrad W. Lehnert, Tasshi Dennis, “Entanglement Thresholds of Doubly Parametric Quantum Transducers”, Phys. Rev. Applied, 17:4 (2022)
Ramakrishnan N., Iten R., Scholz V.B., Berta M., “Computing Quantum Channel Capacities”, IEEE Trans. Inf. Theory, 67:2 (2021), 946–960
Kolchinsky A., Wolpert D.H., “Dependence of Integrated, Instantaneous, and Fluctuating Entropy Production on the Initial State in Quantum and Classical Processes”, Phys. Rev. E, 104:5 (2021), 054107
Gour G., Wilde M.M., “Entropy of a Quantum Channel”, Phys. Rev. Res., 3:2 (2021), 023096
Faist Ph., Berta M., Brandao Fernando G. S. L., “Thermodynamic Implementations of Quantum Processes”, Commun. Math. Phys., 384:3 (2021), 1709–1750
Florio M. Ciaglia, Fabio Di Cosmo, Alberto Ibort, Giuseppe Marmo, “Dynamical Maps and Symmetroids”, Open Syst. Inf. Dyn., 28:04 (2021)
Faist Ph., Berta M., Brandao F., “Thermodynamic Capacity of Quantum Processes”, Phys. Rev. Lett., 122:20 (2019), 200601
Oh Ch., Lee Ch., Banchi L., Lee S.-Y., Rockstuhl C., Jeong H., “Optimal Measurements For Quantum Fidelity Between Gaussian States and Its Relevance to Quantum Metrology”, Phys. Rev. A, 100:1 (2019), 012323
Lami L., Das S., Wilde M.M., “Approximate Reversal of Quantum Gaussian Dynamics”, J. Phys. A-Math. Theor., 51:12 (2018), 125301
Sharma K., Wilde M.M., Adhikari S., Takeoka M., “Bounding the Energy-Constrained Quantum and Private Capacities of Phase-Insensitive Bosonic Gaussian Channels”, New J. Phys., 20 (2018), 063025
Seshadreesan K.P., Lami L., Wilde M.M., “Renyi Relative Entropies of Quantum Gaussian States”, J. Math. Phys., 59:7 (2018), 072204