Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 166, Number 1, Pages 142–159
DOI: https://doi.org/10.4213/tmf6601
(Mi tmf6601)
 

This article is cited in 36 scientific papers (total in 36 papers)

Entropy gain and the Choi–Jamiolkowski correspondence for infinite-dimensional quantum evolutions

A. S. Holevo

Steklov Mathematical Institute, RAS, Moscow, Russia
References:
Abstract: We consider the entropy gain for infinite-dimensional evolutions and show that unlike in the finite-dimensional case, there are many channels with positive minimal entropy gain. We obtain a new lower bound and compute the minimal entropy gain for a broad class of bosonic Gaussian channels. We mathematically formulate the Choi–Jamiolkowski (CJ) correspondence between channels and states in the infinite-dimensional case in a form close to the form used in quantum information theory. In particular, we obtain an explicit expression for the CJ operator defining a general nondegenerate bosonic Gaussian channel and compute its norm.
Keywords: quantum entropy, completely positive map, Choi–Jamiolkowski correspondence, bosonic Gaussian channel.
Received: 17.05.2010
English version:
Theoretical and Mathematical Physics, 2011, Volume 166, Issue 1, Pages 123–138
DOI: https://doi.org/10.1007/s11232-011-0010-5
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. S. Holevo, “Entropy gain and the Choi–Jamiolkowski correspondence for infinite-dimensional quantum evolutions”, TMF, 166:1 (2011), 142–159; Theoret. and Math. Phys., 166:1 (2011), 123–138
Citation in format AMSBIB
\Bibitem{Hol11}
\by A.~S.~Holevo
\paper Entropy gain and the~Choi--Jamiolkowski correspondence for infinite-dimensional quantum evolutions
\jour TMF
\yr 2011
\vol 166
\issue 1
\pages 142--159
\mathnet{http://mi.mathnet.ru/tmf6601}
\crossref{https://doi.org/10.4213/tmf6601}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3165784}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...166..123H}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 166
\issue 1
\pages 123--138
\crossref{https://doi.org/10.1007/s11232-011-0010-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287245500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79951469971}
Linking options:
  • https://www.mathnet.ru/eng/tmf6601
  • https://doi.org/10.4213/tmf6601
  • https://www.mathnet.ru/eng/tmf/v166/i1/p142
  • This publication is cited in the following 36 articles:
    1. Katharina Heidler, Dominique Unruh, Proceedings of the 14th ACM SIGPLAN International Conference on Certified Programs and Proofs, 2025, 243  crossref
    2. Kyung Hoon Han, Seung-Hyeok Kye, Erling Størmer, “Infinite dimensional analogues of Choi matrices”, Journal of Functional Analysis, 287:8 (2024), 110557  crossref
    3. Hemant K. Mishra, Ludovico Lami, Prabha Mandayam, Mark M. Wilde, “Pretty good measurement for bosonic Gaussian ensembles”, Int. J. Quantum Inform., 22:05 (2024)  crossref
    4. Xin Wang, Mark M. Wilde, “Exact entanglement cost of quantum states and channels under positive-partial-transpose-preserving operations”, Phys. Rev. A, 107:1 (2023)  crossref
    5. Seung-Hyeok Kye, “Compositions and tensor products of linear maps between matrix algebras”, Linear Algebra and its Applications, 658 (2023), 283  crossref
    6. Kyung Hoon Han, Seung-Hyeok Kye, “Choi matrices revisited. II”, Journal of Mathematical Physics, 64:10 (2023)  crossref
    7. Curtis L. Rau, Akira Kyle, Alex Kwiatkowski, Ezad Shojaee, John D. Teufel, Konrad W. Lehnert, Tasshi Dennis, “Entanglement Thresholds of Doubly Parametric Quantum Transducers”, Phys. Rev. Applied, 17:4 (2022)  crossref
    8. Magajna B., “Cones of Completely Bounded Maps”, Positivity, 25:1 (2021), 1–29  crossref  mathscinet  isi
    9. Ramakrishnan N., Iten R., Scholz V.B., Berta M., “Computing Quantum Channel Capacities”, IEEE Trans. Inf. Theory, 67:2 (2021), 946–960  crossref  mathscinet  isi
    10. Kolchinsky A., Wolpert D.H., “Dependence of Integrated, Instantaneous, and Fluctuating Entropy Production on the Initial State in Quantum and Classical Processes”, Phys. Rev. E, 104:5 (2021), 054107  crossref  mathscinet  isi
    11. Gour G., Wilde M.M., “Entropy of a Quantum Channel”, Phys. Rev. Res., 3:2 (2021), 023096  crossref  isi
    12. Faist Ph., Berta M., Brandao Fernando G. S. L., “Thermodynamic Implementations of Quantum Processes”, Commun. Math. Phys., 384:3 (2021), 1709–1750  crossref  mathscinet  isi
    13. Florio M. Ciaglia, Fabio Di Cosmo, Alberto Ibort, Giuseppe Marmo, “Dynamical Maps and Symmetroids”, Open Syst. Inf. Dyn., 28:04 (2021)  crossref
    14. Faist Ph., Berta M., Brandao F., “Thermodynamic Capacity of Quantum Processes”, Phys. Rev. Lett., 122:20 (2019), 200601  crossref  isi
    15. Friedland Sh., “Infinite Dimensional Generalizations of Choi'S Theorem”, Spec. Matrices, 7:1 (2019), 67–77  crossref  mathscinet  isi
    16. Oh Ch., Lee Ch., Banchi L., Lee S.-Y., Rockstuhl C., Jeong H., “Optimal Measurements For Quantum Fidelity Between Gaussian States and Its Relevance to Quantum Metrology”, Phys. Rev. A, 100:1 (2019), 012323  crossref  isi  scopus
    17. Lami L., Das S., Wilde M.M., “Approximate Reversal of Quantum Gaussian Dynamics”, J. Phys. A-Math. Theor., 51:12 (2018), 125301  crossref  mathscinet  zmath  isi  scopus
    18. Sharma K., Wilde M.M., Adhikari S., Takeoka M., “Bounding the Energy-Constrained Quantum and Private Capacities of Phase-Insensitive Bosonic Gaussian Channels”, New J. Phys., 20 (2018), 063025  crossref  isi  scopus
    19. Seshadreesan K.P., Lami L., Wilde M.M., “Renyi Relative Entropies of Quantum Gaussian States”, J. Math. Phys., 59:7 (2018), 072204  crossref  mathscinet  zmath  isi  scopus
    20. Zhuang Q., Zhang Zh., Lutkenhaus N., Shapiro J.H., “Security-Proof Framework For Two-Way Gaussian Quantum-Key-Distribution Protocols”, Phys. Rev. A, 98:3 (2018), 032332  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:869
    Full-text PDF :312
    References:135
    First page:27
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025