Abstract:
We use the Zakharov–Manakov ¯∂-dressing method to construct new classes of exact solutions with functional parameters of the hyperbolic and elliptic versions of the Nizhnik–Veselov–Novikov equation with constant asymptotic values at infinity. We show that the constructed solutions contain classes of multisoliton solutions, which at a fixed time are exact potentials of the perturbed telegraph equation {(}the perturbed string equation{\rm)} and the two-dimensional stationary Schrödinger equation. We interpret the stationary states of a microparticle in soliton-type potential fields physically in accordance with the constructed exact wave functions for the two-dimensional stationary Schrödinger equation.
Citation:
V. G. Dubrovskii, A. V. Topovsky, M. Yu. Basalaev, “New exact solutions with functional parameters of the Nizhnik–Veselov–Novikov equation with constant asymptotic values at infinity”, TMF, 165:2 (2010), 272–294; Theoret. and Math. Phys., 165:2 (2010), 1470–1489
\Bibitem{DubTopBas10}
\by V.~G.~Dubrovskii, A.~V.~Topovsky, M.~Yu.~Basalaev
\paper New exact solutions with functional parameters of the~Nizhnik--Veselov--Novikov equation with constant asymptotic values at infinity
\jour TMF
\yr 2010
\vol 165
\issue 2
\pages 272--294
\mathnet{http://mi.mathnet.ru/tmf6576}
\crossref{https://doi.org/10.4213/tmf6576}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 165
\issue 2
\pages 1470--1489
\crossref{https://doi.org/10.1007/s11232-010-0122-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000286199500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78651492533}
Linking options:
https://www.mathnet.ru/eng/tmf6576
https://doi.org/10.4213/tmf6576
https://www.mathnet.ru/eng/tmf/v165/i2/p272
This publication is cited in the following 3 articles:
Dubrovsky V.G. Topovsky A.V., “About Linear Superpositions of Special Exact Solutions of Nizhnik-Veselov-Novikov Equation”, Physics and Mathematics of Nonlinear Phenomena 2013, Journal of Physics Conference Series, 482, IOP Publishing Ltd, 2014, 012011
Dubrovsky V.G. Topovsky A.V., “About Simple Nonlinear and Linear Superpositions of Special Exact Solutions of Veselov-Novikov Equation”, J. Math. Phys., 54:3 (2013), 033509
V. G. Dubrovsky, A. V. Topovsky, M. Yu. Basalaev, “New exact solutions of two-dimensional integrable equations using the ˉ∂-dressing method”, Theoret. and Math. Phys., 167:3 (2011), 725–739