Abstract:
We obtain results on small deviations of Bogoliubov's Gaussian measure occurring in the theory of the statistical equilibrium of quantum systems. For some random processes related to Bogoliubov processes, we find the exact asymptotic probability of their small deviations with respect to a Hilbert norm.
Citation:
R. S. Pusev, “Asymptotics of small deviations of the Bogoliubov processes with respect to a quadratic norm”, TMF, 165:1 (2010), 134–144; Theoret. and Math. Phys., 165:1 (2010), 1348–1357
\Bibitem{Pus10}
\by R.~S.~Pusev
\paper Asymptotics of small deviations of the~Bogoliubov processes with respect to a~quadratic norm
\jour TMF
\yr 2010
\vol 165
\issue 1
\pages 134--144
\mathnet{http://mi.mathnet.ru/tmf6567}
\crossref{https://doi.org/10.4213/tmf6567}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...165.1348P}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 165
\issue 1
\pages 1348--1357
\crossref{https://doi.org/10.1007/s11232-010-0113-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000286399600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78149487726}
Linking options:
https://www.mathnet.ru/eng/tmf6567
https://doi.org/10.4213/tmf6567
https://www.mathnet.ru/eng/tmf/v165/i1/p134
This publication is cited in the following 11 articles:
Alexander Nazarov, Yulia Petrova, “L2-small ball asymptotics for Gaussian random functions: A survey”, Probab. Surveys, 20:none (2023)
Rozovsky L.V., “Small Deviation Probabilities For Sums of Independent Positive Random Variables”, Vestn. St Petersb. Univ.-Math., 53:3 (2020), 295–307
Lifshits M., Nazarov A., “L-2-Small Deviations For Weighted Stationary Processes”, Mathematika, 64:2 (2018), 387–405
Nazarov A.I., Nikitin Ya.Yu., “On Small Deviation Asymptotics in l-2 of Some Mixed Gaussian Processes”, 6, no. 4, 2018, 55
V. R. Fatalov, “Functional integrals for the Bogoliubov Gaussian measure: Exact asymptotic forms”, Theoret. and Math. Phys., 195:2 (2018), 641–657
Ibragimov I.A., Lifshits M.A., Nazarov A.I., Zaporozhets D.N., “On the History of St. Petersburg School of Probability and Mathematical Statistics: II. Random Processes and Dependent Variables”, Vestn. St Petersb. Univ.-Math., 51:3 (2018), 213–236
V. R. Fatalov, “Gaussian Ornstein–Uhlenbeck and Bogoliubov processes: asymptotics of small deviations for Lp-functionals, 0<p<∞”, Problems Inform. Transmission, 50:4 (2014), 371–389
A. I. Nazarov, R. S. Pusev, “Comparison theorems for the small ball probabilities of the Green Gaussian processes in weighted L2-norms”, St. Petersburg Math. J., 25:3 (2014), 455–466
Nazarov A.I., Sheipak I.A., “Degenerate self-similar measures, spectral asymptotics and small deviations of Gaussian processes”, Bull. Lond. Math. Soc., 44:1 (2012), 12–24
Ya. Yu. Nikitin, R. S. Pusev, “The exact asymptotic of small deviations for a series of Brownian functionals”, Theory Probab. Appl., 57:1 (2013), 60–81
V. R. Fatalov, “Asymptotic behavior of small deviations for Bogoliubov's Gaussian measure in the Lp norm, 2⩽p⩽∞”, Theoret. and Math. Phys., 173:3 (2012), 1720–1733