Abstract:
We study the asymptotic properties of integral operators with the generalized sine kernel acting on the real axis. We obtain the formulas for the Fredholm determinant and the resolvent in the large-x limit and consider some applications of the obtained results to the theory of integrable models.
Citation:
N. A. Slavnov, “Integral operators with the generalized sine kernel on the real axis”, TMF, 165:1 (2010), 32–47; Theoret. and Math. Phys., 165:1 (2010), 1262–1274
\Bibitem{Sla10}
\by N.~A.~Slavnov
\paper Integral operators with the~generalized sine kernel on the~real axis
\jour TMF
\yr 2010
\vol 165
\issue 1
\pages 32--47
\mathnet{http://mi.mathnet.ru/tmf6562}
\crossref{https://doi.org/10.4213/tmf6562}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...165.1262S}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 165
\issue 1
\pages 1262--1274
\crossref{https://doi.org/10.1007/s11232-010-0108-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000286399600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78149491725}
Linking options:
https://www.mathnet.ru/eng/tmf6562
https://doi.org/10.4213/tmf6562
https://www.mathnet.ru/eng/tmf/v165/i1/p32
This publication is cited in the following 10 articles:
Jordan Hristov, “A non-linear diffusion problem with power-law diffusivity: An approximate solution experimenting with a modified sinc function”, MMNSA, 4:5-Special Issue: ICAME'24 (2024), 6
O Gamayun, Yu Zhuravlev, N Iorgov, “On Landauer–Büttiker formalism from a quantum quench”, J. Phys. A: Math. Theor., 56:20 (2023), 205203
Daniel Chernowitz, Oleksandr Gamayun, “On the dynamics of free-fermionic tau-functions at finite temperature”, SciPost Phys. Core, 5:1 (2022)
Oleksandr Gamayun, Miłosz Panfil, Felipe Taha Sant'Ana, “Mobile impurity in a one-dimensional gas at finite temperatures”, Phys. Rev. A, 106:2 (2022)
Gamayun O. Iorgov N. Zhuravlev Yu., “Effective Free-Fermionic Form Factors and the Xy Spin Chain”, SciPost Phys., 10:3 (2021), 070
Gamayun O., Pronko A.G., Zvonarev M.B., “Time and temperature-dependent correlation function of an impurity in one-dimensional Fermi and Tonks?Girardeau gases as a Fredholm determinant”, New J. Phys., 18 (2016), 045005
Gamayun O. Pronko A.G. Zvonarev M.B., “Impurity Green's Function of a One-Dimensional Fermi Gas”, Nucl. Phys. B, 892 (2015), 83–104
Ossipov A., “Entanglement Entropy in Fermi Gases and Anderson's Orthogonality Catastrophe”, Phys. Rev. Lett., 113:13 (2014), 130402
Kozlowski K.K., Maillet J.M., Slavnov N.A., “Correlation functions for one-dimensional bosons at low temperature”, J Stat Mech Theory Exp, 2011, P03019
K K Kozlowski, J M Maillet, N A Slavnov, “Long-distance behavior of temperature correlation functions in the one-dimensional Bose gas”, J. Stat. Mech., 2011:03 (2011), P03018