Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 165, Number 1, Pages 32–47
DOI: https://doi.org/10.4213/tmf6562
(Mi tmf6562)
 

This article is cited in 10 scientific papers (total in 10 papers)

Integral operators with the generalized sine kernel on the real axis

N. A. Slavnov

Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We study the asymptotic properties of integral operators with the generalized sine kernel acting on the real axis. We obtain the formulas for the Fredholm determinant and the resolvent in the large-x limit and consider some applications of the obtained results to the theory of integrable models.
Keywords: Fredholm determinant, resolvent, asymptotic expansion.
Received: 27.04.2010
English version:
Theoretical and Mathematical Physics, 2010, Volume 165, Issue 1, Pages 1262–1274
DOI: https://doi.org/10.1007/s11232-010-0108-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. A. Slavnov, “Integral operators with the generalized sine kernel on the real axis”, TMF, 165:1 (2010), 32–47; Theoret. and Math. Phys., 165:1 (2010), 1262–1274
Citation in format AMSBIB
\Bibitem{Sla10}
\by N.~A.~Slavnov
\paper Integral operators with the~generalized sine kernel on the~real axis
\jour TMF
\yr 2010
\vol 165
\issue 1
\pages 32--47
\mathnet{http://mi.mathnet.ru/tmf6562}
\crossref{https://doi.org/10.4213/tmf6562}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...165.1262S}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 165
\issue 1
\pages 1262--1274
\crossref{https://doi.org/10.1007/s11232-010-0108-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000286399600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78149491725}
Linking options:
  • https://www.mathnet.ru/eng/tmf6562
  • https://doi.org/10.4213/tmf6562
  • https://www.mathnet.ru/eng/tmf/v165/i1/p32
  • This publication is cited in the following 10 articles:
    1. Jordan Hristov, “A non-linear diffusion problem with power-law diffusivity: An approximate solution experimenting with a modified sinc function”, MMNSA, 4:5-Special Issue: ICAME'24 (2024), 6  crossref
    2. O Gamayun, Yu Zhuravlev, N Iorgov, “On Landauer–Büttiker formalism from a quantum quench”, J. Phys. A: Math. Theor., 56:20 (2023), 205203  crossref
    3. Daniel Chernowitz, Oleksandr Gamayun, “On the dynamics of free-fermionic tau-functions at finite temperature”, SciPost Phys. Core, 5:1 (2022)  crossref
    4. Oleksandr Gamayun, Miłosz Panfil, Felipe Taha Sant'Ana, “Mobile impurity in a one-dimensional gas at finite temperatures”, Phys. Rev. A, 106:2 (2022)  crossref
    5. Gamayun O. Iorgov N. Zhuravlev Yu., “Effective Free-Fermionic Form Factors and the Xy Spin Chain”, SciPost Phys., 10:3 (2021), 070  crossref  mathscinet  isi
    6. Gamayun O., Pronko A.G., Zvonarev M.B., “Time and temperature-dependent correlation function of an impurity in one-dimensional Fermi and Tonks?Girardeau gases as a Fredholm determinant”, New J. Phys., 18 (2016), 045005  crossref  isi  elib  scopus
    7. Gamayun O. Pronko A.G. Zvonarev M.B., “Impurity Green's Function of a One-Dimensional Fermi Gas”, Nucl. Phys. B, 892 (2015), 83–104  crossref  mathscinet  zmath  isi  scopus
    8. Ossipov A., “Entanglement Entropy in Fermi Gases and Anderson's Orthogonality Catastrophe”, Phys. Rev. Lett., 113:13 (2014), 130402  crossref  adsnasa  isi  scopus
    9. Kozlowski K.K., Maillet J.M., Slavnov N.A., “Correlation functions for one-dimensional bosons at low temperature”, J Stat Mech Theory Exp, 2011, P03019  crossref  isi  scopus
    10. K K Kozlowski, J M Maillet, N A Slavnov, “Long-distance behavior of temperature correlation functions in the one-dimensional Bose gas”, J. Stat. Mech., 2011:03 (2011), P03018  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:577
    Full-text PDF :230
    References:67
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025