Abstract:
Using the notions of an $\Omega$-function and of functions suitable for an $\Omega$-function, we show that the space of $C^1$-smooth skew products of maps of an interval such that the quotient map of each is $\Omega$-stable in the space of $C^1$-smooth maps of a closed interval into itself and has a type $\succ2^{\infty}$ (i.e., contains a periodic orbit with the period not equal to a power of $2$) can be represented as a union of four nonempty pairwise nonintersecting subspaces. We give examples of maps belonging to each of the identified subspaces.
Citation:
L. S. Efremova, “Space of $C^1$-smooth skew products of maps of an interval”, TMF, 164:3 (2010), 447–454; Theoret. and Math. Phys., 164:3 (2010), 1208–1214
\Bibitem{Efr10}
\by L.~S.~Efremova
\paper Space of $C^1$-smooth skew products of maps of an~interval
\jour TMF
\yr 2010
\vol 164
\issue 3
\pages 447--454
\mathnet{http://mi.mathnet.ru/tmf6556}
\crossref{https://doi.org/10.4213/tmf6556}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164.1208E}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 3
\pages 1208--1214
\crossref{https://doi.org/10.1007/s11232-010-0102-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282695500015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957979305}
Linking options:
https://www.mathnet.ru/eng/tmf6556
https://doi.org/10.4213/tmf6556
https://www.mathnet.ru/eng/tmf/v164/i3/p447
This publication is cited in the following 9 articles:
L. S. Efremova, E. N. Makhrova, “One-dimensional dynamical systems”, Russian Math. Surveys, 76:5 (2021), 821–881
Efremova L.S., “Geometrically Integrable Maps in the Plane and Their Periodic Orbits”, Lobachevskii J. Math., 42:10, SI (2021), 2315–2324
Efremova L.S., “Small Perturbations of Smooth Skew Products and Sharkovsky'S Theorem”, J. Differ. Equ. Appl., 26:8 (2020), 1192–1211
L.S. Efremova, “Small C
1-smooth perturbations of skew products and the partial integrability property”, Applied Mathematics and Nonlinear Sciences, 5:2 (2020), 317
L. S. Efremova, “Dynamics of skew products of interval maps”, Russian Math. Surveys, 72:1 (2017), 101–178
Efremova L.S., “Stability as a Whole of a Family of Fibers Maps and -Stability of C ^{1} -Smooth Skew Products of Maps of an Interval”, Noma15 International Workshop on Nonlinear Maps and Applications, Journal of Physics Conference Series, 692, eds. Gelfreich V., FournierPrunaret D., LopezRuiz R., Callegari S., Nishio Y., Blokhina E., IOP Publishing Ltd, 2016, 012010
L. S. Efremova, “Nonwandering Sets of C 1-Smooth Skew Products of Interval Maps with Complicated Dynamics of Quotient Map”, J Math Sci, 219:1 (2016), 86
Lyudmila S. Efremova, Springer Proceedings in Mathematics & Statistics, 57, Nonlinear Maps and their Applications, 2014, 39
L. S. Efremova, “A decomposition theorem for the space of $C^1$-smooth skew products with complicated dynamics of the quotient map”, Sb. Math., 204:11 (2013), 1598–1623