Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 164, Number 3, Pages 447–454
DOI: https://doi.org/10.4213/tmf6556
(Mi tmf6556)
 

This article is cited in 9 scientific papers (total in 9 papers)

Space of $C^1$-smooth skew products of maps of an interval

L. S. Efremova

Lobachevsky Nizhnii Novgorod State University (Research University), Nizhnii Novgorod, Russia
Full-text PDF (464 kB) Citations (9)
References:
Abstract: Using the notions of an $\Omega$-function and of functions suitable for an $\Omega$-function, we show that the space of $C^1$-smooth skew products of maps of an interval such that the quotient map of each is $\Omega$-stable in the space of $C^1$-smooth maps of a closed interval into itself and has a type $\succ2^{\infty}$ (i.e., contains a periodic orbit with the period not equal to a power of $2$) can be represented as a union of four nonempty pairwise nonintersecting subspaces. We give examples of maps belonging to each of the identified subspaces.
Keywords: skew product, quotient map, $\Omega$-function, suitable function.
English version:
Theoretical and Mathematical Physics, 2010, Volume 164, Issue 3, Pages 1208–1214
DOI: https://doi.org/10.1007/s11232-010-0102-7
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. S. Efremova, “Space of $C^1$-smooth skew products of maps of an interval”, TMF, 164:3 (2010), 447–454; Theoret. and Math. Phys., 164:3 (2010), 1208–1214
Citation in format AMSBIB
\Bibitem{Efr10}
\by L.~S.~Efremova
\paper Space of $C^1$-smooth skew products of maps of an~interval
\jour TMF
\yr 2010
\vol 164
\issue 3
\pages 447--454
\mathnet{http://mi.mathnet.ru/tmf6556}
\crossref{https://doi.org/10.4213/tmf6556}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164.1208E}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 3
\pages 1208--1214
\crossref{https://doi.org/10.1007/s11232-010-0102-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282695500015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957979305}
Linking options:
  • https://www.mathnet.ru/eng/tmf6556
  • https://doi.org/10.4213/tmf6556
  • https://www.mathnet.ru/eng/tmf/v164/i3/p447
  • This publication is cited in the following 9 articles:
    1. L. S. Efremova, E. N. Makhrova, “One-dimensional dynamical systems”, Russian Math. Surveys, 76:5 (2021), 821–881  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Efremova L.S., “Geometrically Integrable Maps in the Plane and Their Periodic Orbits”, Lobachevskii J. Math., 42:10, SI (2021), 2315–2324  crossref  mathscinet  isi
    3. Efremova L.S., “Small Perturbations of Smooth Skew Products and Sharkovsky'S Theorem”, J. Differ. Equ. Appl., 26:8 (2020), 1192–1211  crossref  mathscinet  isi
    4. L.S. Efremova, “Small C 1-smooth perturbations of skew products and the partial integrability property”, Applied Mathematics and Nonlinear Sciences, 5:2 (2020), 317  crossref
    5. L. S. Efremova, “Dynamics of skew products of interval maps”, Russian Math. Surveys, 72:1 (2017), 101–178  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Efremova L.S., “Stability as a Whole of a Family of Fibers Maps and -Stability of C ^{1} -Smooth Skew Products of Maps of an Interval”, Noma15 International Workshop on Nonlinear Maps and Applications, Journal of Physics Conference Series, 692, eds. Gelfreich V., FournierPrunaret D., LopezRuiz R., Callegari S., Nishio Y., Blokhina E., IOP Publishing Ltd, 2016, 012010  crossref  mathscinet  isi  scopus
    7. L. S. Efremova, “Nonwandering Sets of C 1-Smooth Skew Products of Interval Maps with Complicated Dynamics of Quotient Map”, J Math Sci, 219:1 (2016), 86  crossref
    8. Lyudmila S. Efremova, Springer Proceedings in Mathematics & Statistics, 57, Nonlinear Maps and their Applications, 2014, 39  crossref
    9. L. S. Efremova, “A decomposition theorem for the space of $C^1$-smooth skew products with complicated dynamics of the quotient map”, Sb. Math., 204:11 (2013), 1598–1623  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:612
    Full-text PDF :253
    References:85
    First page:16
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025