Abstract:
We analyze the role of an instrument in the recently proposed functional formulation of classical mechanics, whose basic equation is the Liouville equation. Its solution has the delocalization (spreading) property, which is interpreted as irreversibility on the microlevel. We show that the reversible and recurrent dynamics for a particle can be observed by tracking the particle dynamics using instruments, but repeated measurements inevitably lead to a heat release and an increase in the entropy of the instrument. The irreversible behavior is thus transported from the system under study to the instrument, which is also a physical system.
Citation:
A. S. Trushechkin, “Irreversibility and the role of an instrument in the functional formulation of classical mechanics”, TMF, 164:3 (2010), 435–440; Theoret. and Math. Phys., 164:3 (2010), 1198–1201
\Bibitem{Tru10}
\by A.~S.~Trushechkin
\paper Irreversibility and the~role of an~instrument in the~functional formulation of classical mechanics
\jour TMF
\yr 2010
\vol 164
\issue 3
\pages 435--440
\mathnet{http://mi.mathnet.ru/tmf6554}
\crossref{https://doi.org/10.4213/tmf6554}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164.1198T}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 3
\pages 1198--1201
\crossref{https://doi.org/10.1007/s11232-010-0100-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282695500013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958027819}
Linking options:
https://www.mathnet.ru/eng/tmf6554
https://doi.org/10.4213/tmf6554
https://www.mathnet.ru/eng/tmf/v164/i3/p435
This publication is cited in the following 10 articles:
Casey O Barkan, “On the convergence of phase space distributions to microcanonical equilibrium: dynamical isometry and generalized coarse-graining”, J. Phys. A: Math. Theor., 57:47 (2024), 475001
Trushechkin A., “Microscopic and Soliton-Like Solutions of the Boltzmann Enskog and Generalized Enskog Equations For Elastic and Inelastic Hard Spheres”, Kinet. Relat. Mod., 7:4 (2014), 755–778
A. I. Mikhailov, “Infinitnoe dvizhenie v klassicheskoi funktsionalnoi mekhanike”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(30) (2013), 222–232
I. V. Volovich, A. S. Trushechkin, “Asymptotic properties of quantum dynamics in bounded domains at various time scales”, Izv. Math., 76:1 (2012), 39–78
A. S. Trushechkin, “Uravnenie Boltsmana i $H$-teorema v funktsionalnoi formulirovke klassicheskoi mekhaniki”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(22) (2011), 158–164
A. I. Mikhailov, “The functional mechanics: Evolution of the moments of distribution function and the Poincaré recurrence theorem”, P-Adic Numbers, Ultrametric Analysis, and Applications, 3:3 (2011), 205–211
Anton S. Trushechkin, “Derivation of the Boltzmann equation and entropy production in functional mechanics”, P-Adic Num Ultrametr Anal Appl, 3:3 (2011), 225
E. V. Piskovskii, “O klassicheskom i funktsionalnom podkhodakh k mekhanike”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(22) (2011), 134–139
E. V. Piskovskiy, “On classical and functional approachs to mechanics”, –
I. V. Volovich, “Bogoliubov equations and functional mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1128–1135