Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 164, Number 3, Pages 435–440
DOI: https://doi.org/10.4213/tmf6554
(Mi tmf6554)
 

This article is cited in 10 scientific papers (total in 10 papers)

Irreversibility and the role of an instrument in the functional formulation of classical mechanics

A. S. Trushechkin

Steklov Mathematical Institute, RAS, Moscow, Russia
References:
Abstract: We analyze the role of an instrument in the recently proposed functional formulation of classical mechanics, whose basic equation is the Liouville equation. Its solution has the delocalization (spreading) property, which is interpreted as irreversibility on the microlevel. We show that the reversible and recurrent dynamics for a particle can be observed by tracking the particle dynamics using instruments, but repeated measurements inevitably lead to a heat release and an increase in the entropy of the instrument. The irreversible behavior is thus transported from the system under study to the instrument, which is also a physical system.
Keywords: classical mechanics, irreversibility problem, Liouville equation, measurement theory.
English version:
Theoretical and Mathematical Physics, 2010, Volume 164, Issue 3, Pages 1198–1201
DOI: https://doi.org/10.1007/s11232-010-0100-9
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. S. Trushechkin, “Irreversibility and the role of an instrument in the functional formulation of classical mechanics”, TMF, 164:3 (2010), 435–440; Theoret. and Math. Phys., 164:3 (2010), 1198–1201
Citation in format AMSBIB
\Bibitem{Tru10}
\by A.~S.~Trushechkin
\paper Irreversibility and the~role of an~instrument in the~functional formulation of classical mechanics
\jour TMF
\yr 2010
\vol 164
\issue 3
\pages 435--440
\mathnet{http://mi.mathnet.ru/tmf6554}
\crossref{https://doi.org/10.4213/tmf6554}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164.1198T}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 3
\pages 1198--1201
\crossref{https://doi.org/10.1007/s11232-010-0100-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282695500013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958027819}
Linking options:
  • https://www.mathnet.ru/eng/tmf6554
  • https://doi.org/10.4213/tmf6554
  • https://www.mathnet.ru/eng/tmf/v164/i3/p435
  • This publication is cited in the following 10 articles:
    1. Casey O Barkan, “On the convergence of phase space distributions to microcanonical equilibrium: dynamical isometry and generalized coarse-graining”, J. Phys. A: Math. Theor., 57:47 (2024), 475001  crossref
    2. Trushechkin A., “Microscopic and Soliton-Like Solutions of the Boltzmann Enskog and Generalized Enskog Equations For Elastic and Inelastic Hard Spheres”, Kinet. Relat. Mod., 7:4 (2014), 755–778  crossref  mathscinet  zmath  isi  scopus
    3. A. I. Mikhailov, “Infinitnoe dvizhenie v klassicheskoi funktsionalnoi mekhanike”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(30) (2013), 222–232  mathnet  crossref
    4. I. V. Volovich, A. S. Trushechkin, “Asymptotic properties of quantum dynamics in bounded domains at various time scales”, Izv. Math., 76:1 (2012), 39–78  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. A. S. Trushechkin, “Uravnenie Boltsmana i $H$-teorema v funktsionalnoi formulirovke klassicheskoi mekhaniki”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(22) (2011), 158–164  mathnet  crossref
    6. A. I. Mikhailov, “The functional mechanics: Evolution of the moments of distribution function and the Poincaré recurrence theorem”, P-Adic Numbers, Ultrametric Analysis, and Applications, 3:3 (2011), 205–211  mathnet  crossref  crossref  elib
    7. Anton S. Trushechkin, “Derivation of the Boltzmann equation and entropy production in functional mechanics”, P-Adic Num Ultrametr Anal Appl, 3:3 (2011), 225  crossref
    8. E. V. Piskovskii, “O klassicheskom i funktsionalnom podkhodakh k mekhanike”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(22) (2011), 134–139  mathnet  crossref
    9. E. V. Piskovskiy, “On classical and functional approachs to mechanics”,  mathnet  mathnet  crossref  crossref
    10. I. V. Volovich, “Bogoliubov equations and functional mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1128–1135  mathnet  crossref  crossref  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:641
    Full-text PDF :302
    References:113
    First page:20
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025