Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 164, Number 3, Pages 386–393
DOI: https://doi.org/10.4213/tmf6548
(Mi tmf6548)
 

This article is cited in 5 scientific papers (total in 5 papers)

Two-particle wave function as an integral operator and the random field approach to quantum correlations

A. Yu. Khrennikov

International Center for Mathematical Modeling in Physics, Engineering, Economics, and Cognitive Science, Linnaeus University, Växjö-Kalmar, Sweden
Full-text PDF (360 kB) Citations (5)
References:
Abstract: We propose a new interpretation of the wave function $\Psi(x,y)$ of a two-particle quantum system, interpreting it not as an element of the functional space $L_2$ of square-integrable functions, i.e., as a vector, but as the kernel of an integral (Hilbert–Schmidt) operator. The first part of the paper is devoted to expressing quantum averages including the correlations in two-particle systems using the wave-function operator. This is a new mathematical representation in the framework of conventional quantum mechanics. But the new interpretation of the wave function not only generates a new mathematical formalism for quantum mechanics but also allows going beyond quantum mechanics, i.e., representing quantum correlations (including those in entangled systems) as correlations of (Gaussian) random fields.
Keywords: classical wave, quantum average, wave function, integral operator.
English version:
Theoretical and Mathematical Physics, 2010, Volume 164, Issue 3, Pages 1156–1162
DOI: https://doi.org/10.1007/s11232-010-0094-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Yu. Khrennikov, “Two-particle wave function as an integral operator and the random field approach to quantum correlations”, TMF, 164:3 (2010), 386–393; Theoret. and Math. Phys., 164:3 (2010), 1156–1162
Citation in format AMSBIB
\Bibitem{Khr10}
\by A.~Yu.~Khrennikov
\paper Two-particle wave function as an~integral operator and the~random field approach to quantum correlations
\jour TMF
\yr 2010
\vol 164
\issue 3
\pages 386--393
\mathnet{http://mi.mathnet.ru/tmf6548}
\crossref{https://doi.org/10.4213/tmf6548}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164.1156K}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 3
\pages 1156--1162
\crossref{https://doi.org/10.1007/s11232-010-0094-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282695500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957980421}
Linking options:
  • https://www.mathnet.ru/eng/tmf6548
  • https://doi.org/10.4213/tmf6548
  • https://www.mathnet.ru/eng/tmf/v164/i3/p386
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:504
    Full-text PDF :245
    References:51
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024